skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Xi, Yuanzhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advancements in operator-type neural networks have shown promising results in approximating the solutions of spatiotemporal Partial Differential Equations (PDEs). However, these neural networks often entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines. In this paper, we propose a new learning framework to address these issues. A new spatiotemporal adaptation is proposed to generalize any Fourier Neural Operator (FNO) variant to learn maps between Bochner spaces, which can perform an arbitrary-length temporal super-resolution for the first time. To better exploit this capacity, a new paradigm is proposed to refine the commonly adopted end-to-end neural operator training and evaluations with the help from the wisdom from traditional numerical PDE theory and techniques. Specifically, in the learning problems for the turbulent flow modeled by the Navier-Stokes Equations (NSE), the proposed paradigm trains an FNO only for a few epochs. Then, only the newly proposed spatiotemporal spectral convolution layer is fine-tuned without the frequency truncation. The spectral fine-tuning loss function uses a negative Sobolev norm for the first time in operator learning, defined through a reliable functional-type a posteriori error estimator whose evaluation is exact thanks to the Parseval identity. Moreover, unlike the difficult nonconvex optimization problems in the end-to-end training, this fine-tuning loss is convex. Numerical experiments on commonly used NSE benchmarks demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers under certain conditions. The source code is publicly available at https://github.com/scaomath/torch-cfd. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  2. Free, publicly-accessible full text available October 31, 2025
  3. Free, publicly-accessible full text available August 31, 2025
  4. Free, publicly-accessible full text available May 13, 2025
  5. Free, publicly-accessible full text available March 31, 2025
  6. Free, publicly-accessible full text available April 16, 2025
  7. Free, publicly-accessible full text available April 16, 2025
  8. This paper develops a new class of nonlinear acceleration algorithms based on extending conjugate residual-type procedures from linear to nonlinear equations. The main algorithm has strong similarities with Anderson acceleration as well as with inexact Newton methods—depending on which variant is implemented. We prove theoretically and verify experimentally, on a variety of problems from simulation experiments to deep learning applications, that our method is a powerful accelerated iterative algorithm. The code is available at https://github.com/Data-driven-numerical-methods/Nonlinear-Truncated-Conjugate-Residual. 
    more » « less
  9. Summary A general, rectangular kernel matrix may be defined as where is a kernel function and where and are two sets of points. In this paper, we seek a low‐rank approximation to a kernel matrix where the sets of points and are large and are arbitrarily distributed, such as away from each other, “intermingled”, identical, and so forth. Such rectangular kernel matrices may arise, for example, in Gaussian process regression where corresponds to the training data and corresponds to the test data. In this case, the points are often high‐dimensional. Since the point sets are large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling out most algebraic techniques. In particular, we seek methods that can scale linearly or nearly linearly with respect to the size of data for a fixed approximation rank. The main idea in this paper is to geometrically select appropriate subsets of points to construct a low rank approximation. An analysis in this paper guides how this selection should be performed. 
    more » « less