skip to main content

Search for: All records

Creators/Authors contains: "Xiang, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The downward flux of sinking particles is a prominent Hg removal and redistribution process in the ocean; however, it is not well-constrained. Using data from three U.S. GEOTRACES cruises including the Pacific, Atlantic, and Arctic Oceans, we examined the mercury partitioning coefficient, K d , in the water column. The data suggest that the K d varies widely over three ocean basins. We also investigated the effect of particle concentration and composition on K d by comparing the concentration of small-sized (1–51 μm) suspended particulate mass (SPM) as well as its compositional fractions in six different phases to the partitioning coefficient. We observed an inverse relationship between K d and suspended particulate mass, as has been observed for other metals and known as the “particle concentration effect,” that explains much of the variation in K d . Particulate organic matter (POM) and calcium carbonate (CaCO 3 ) dominated the Hg partitioning in all three ocean basins while Fe and Mn could make a difference in some places where their concentrations are elevated, such as in hydrothermal plumes. Finally, our estimated Hg residence time has a strong negative correlation with average log bulk K d , indicating that K d hasmore »significant effect on Hg residence time.« less