skip to main content

Search for: All records

Creators/Authors contains: "Xiao, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the cariogenic role of Candida suggested from recent studies, oral Candida acquisition in children at high risk for early childhood caries (ECC) and its association with cariogenic bacteria Streptococcus mutans remain unclear. Although ECC disproportionately afflicts socioeconomically disadvantaged and racial-minority children, microbiological studies focusing on the underserved group are scarce. Our prospective cohort study examined the oral colonization of Candida and S. mutans among 101 infants exclusively from a low-income and racial-minority background in the first year of life. The Cox hazard proportional model was fitted to assess factors associated with the time to event of the emergence ofmore »oral Candida and S. mutans. Oral Candida colonization started as early as 1 wk among 13% of infants, increased to 40% by 2 mo, escalated to 48% by 6 mo, and remained the same level until 12 mo. S. mutans in saliva was detected among 20% infants by 12 mo. The emergence of S. mutans by year 1 was 3.5 times higher (hazard ratio [HR], 3.5; confidence interval [CI], 1.1–11.3) in infants who had early colonization of oral Candida compared to those who were free of oral Candida ( P = 0.04) and 3 times higher (HR, 3.0; CI, 1.3–6.9) among infants whose mother had more than 3 decayed teeth ( P = 0.01), even after adjusting demographics, feeding, mother’s education, and employment status. Infants’ salivary S. mutans abundance was positively correlated with infants’ Candida albicans ( P < 0.01) and Candida krusei levels ( P < 0.05). Infants’ oral colonization of C. albicans was positively associated with mother’s oral C. albicans carriage and education ( P < 0.01) but negatively associated with mother’s employment status ( P = 0.01). Future studies are warranted to examine whether oral Candida modulates the oral bacterial community as a whole to become cariogenic during the onset and progression of ECC, which could lead to developing novel ECC predictive and preventive strategies from a fungal perspective.« less
  2. This paper investigates the idea of introducing learning algorithms into parking guidance and information systems that employ a central server, in order to provide estimated optimal parking searching strategies to travelers. The parking searching process on a network with uncertain parking availability can naturally be modeled as a Markov Decision Process (MDP). Such an MDP with full information can easily be solved by dynamic programming approaches. However, the probabilities of finding parking are difficult to define and calculate, even with accurate occupancy data. Learning algorithms are suitable for addressing this issue. The central server collects data from numerous travelers’ parkingmore »search experiences in the same area within a time window, computes approximated optimal parking searching strategy using a learning algorithm, and distributes the strategy to travelers. We propose an algorithm based on Q-learning, where the topology of the underlying transportation network is incorporated. This modification allows us to reduce the size of the problem dramatically, and thus the amount of data required to learn the optimal strategy. Numerical experiments conducted on a toy network show that the proposed learning algorithm outperforms the nearest-node greedy search strategy and the original Q-learning algorithm. Sensitivity analysis regarding the desired amount of training data is also performed.« less
  3. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projectsmore »on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed. The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems.« less
  4. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projectsmore »on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed. The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems.« less
  5. A bstract A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb − 1 . The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used tomore »identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b ∗ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b ∗ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b ∗ model to date.« less
    Free, publicly-accessible full text available April 1, 2023
  6. Free, publicly-accessible full text available March 1, 2023
  7. A bstract A search for a heavy resonance decaying to a top quark and a W boson in the fully hadronic final state is presented. The analysis is performed using data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb − 1 recorded by the CMS experiment at the LHC. The search is focused on heavy resonances, where the decay products of each top quark or W boson are expected to be reconstructed as a single, large-radius jet with a distinct substructure. The production of an excited bottom quark, b *more », is used as a benchmark when setting limits on the cross section for a heavy resonance decaying to a top quark and a W boson. The hypotheses of b * quarks with left-handed, right-handed, and vector-like chiralities are excluded at 95% confidence level for masses below 2.6, 2.8, and 3.1 TeV, respectively. These are the most stringent limits on the b * quark mass to date, extending the previous best limits by almost a factor of two.« less
    Free, publicly-accessible full text available December 1, 2022
  8. A bstract A search is presented for new particles produced at the LHC in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb − 1 , collected in 2017–2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with anmore »earlier search based on a data sample of 36 fb − 1 , collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.« less
    Free, publicly-accessible full text available November 1, 2022
  9. Free, publicly-accessible full text available September 1, 2022