skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiao, Peiyao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 28, 2026
  2. Free, publicly-accessible full text available April 28, 2026
  3. Federated bilevel optimization (FBO) has garnered significant attention lately, driven by its promising applications in meta-learning and hyperparameter optimization. Existing algorithms generally aim to approximate the gradient of the upper-level objective function (hypergradient) in the federated setting. However, because of the nonlinearity of the hypergradient and client drift, they often involve complicated computations. These computations, like multiple optimization sub-loops and second-order derivative evaluations, end up with significant memory consumption and high computational costs. In this paper, we propose a computationally and memory-efficient FBO algorithm named MemFBO. MemFBO features a fully single-loop structure with all involved variables updated simultaneously, and uses only first-order gradient information for all local updates. We show that MemFBO exhibits a linear convergence speedup with milder assumptions in both partial and full client participation scenarios. We further implement MemFBO in a novel FBO application for federated data cleaning. Our experiments, conducted on this application and federated hyper-representation, demonstrate the effectiveness of the proposed algorithm. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  4. Federated bilevel optimization (FBO) has garnered significant attention lately, driven by its promising applications in meta-learning and hyperparameter optimization. Existing algorithms generally aim to approximate the gradient of the upper-level objective function (hypergradient) in the federated setting. However, because of the nonlinearity of the hypergradient and client drift, they often involve complicated computations. These computations, like multiple optimization sub-loops and second-order derivative evaluations, end up with significant memory consumption and high computational costs. In this paper, we propose a computationally and memory-efficient FBO algorithm named MemFBO. MemFBO features a fully single-loop structure with all involved variables updated simultaneously, and uses only first-order gradient information for all local updates. We show that MemFBO exhibits a linear convergence speedup with milder assumptions in both partial and full client participation scenarios. We further implement MemFBO in a novel FBO application for federated data cleaning. Our experiments, conducted on this application and federated hyper-representation, demonstrate the effectiveness of the proposed algorithm. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026