Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Fortunian archaeocyath sponges acquired biomineralization in the beginning of the Cambrian explosionArchaeocyaths are biocalcified sponges largely restricted to the early Cambrian Period. Their perforated cup-shaped body facilitated filter feeding. Many of them were clonal modular animals that formed the earliest metazoan skeletal reefs. In Siberia, archaeocyaths extend from late Age 2 to Age 4 of the early Cambrian, representing an ∼15 m.y. range (ca. 525−510 Ma). Elsewhere, archaeocyaths emerged later than in Siberia and, in places, survived to the middle-late Cambrian. The existing fossil record thus indicates an out-of-Siberia scenario and delayed biomineralization in archaeocyaths relative to many other animals, which acquired biomineralization in the Fortunian Age of the early Cambrian. Here we report two microscopic archaeocyath species—Primocyathus uniseriatus Wang and Xiao, gen. et sp. nov. and Sinocyathus biseriatus Wang and Xiao, gen. et sp. nov.—from the Fortunian Kuanchuanpu Formation (ca. 533 Ma) in South China. Preserved as phosphatized internal molds, they are interpreted to have had a biomineralized, two-walled, perforated, cup-shaped skeleton. They were likely filter feeders, but their solitary habit and millimetric body size indicate that they were unlikely reef framework builders. They substantially extend the stratigraphic range of archaeocyaths, challenge the out-of-Siberia hypothesis, support archaeocyath biomineralization in the beginning of the Cambrian explosion, and imply a Precambrian divergence of sponge classes.more » « lessFree, publicly-accessible full text available April 4, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract Silicified microfossils are reported from nine stratigraphic sections of the Ediacaran Doushantuo Formation deposited in shelf margin, slope, and basin environments in Hunan Province of South China. These microfossils include sphaeromorphic and acanthomorphic acritarchs (15 genera and 29 species, including three new acanthomorph species,Bullatosphaera?colliformisn. sp.,Eotylotopalla inflatan. sp., andVerrucosphaera?undulatan. sp.), multicellular algae, tubular microfossils, and other problematic forms, representing major fossil groups similar to those from the Doushantuo Formation in more proximal facies (e.g., inner shelf and shelf lagoon). A database of the abundance and occurrences of Doushantuo acanthomorphs is assembled and analyzed using quantitative and data-visualization methods (e.g., rarefaction analysis, non-parametric multidimensional scaling, and network analysis). The results show that, at the genus and species levels, taxonomic richness of Doushantuo acanthomorphs exhibits considerable variation among facies, but this variation is largely due to sampling and taphonomic biases. The results also show that numerous acanthomorph taxa have broad facies distribution, affirming their biostratigraphic value. The analysis confirms that acanthomorphs in the Weng'an biota of shelf margin facies are composed of a mixture of Member II and Member III assemblages of shelf-lagoon facies in the Yangtze Gorges area. The study shows the biostratigraphic potential of acanthomorphs in the establishment of regional biozones using the first appearance datum of widely distributed taxa, highlighting the importance of continuing exploration of under-sampled Doushantuo sections in slope and basinal facies. UUID:http://zoobank.org/6fc92858-4054-4117-8043-1f06cfe77155more » « lessFree, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available June 26, 2025
-
The snowball Earth hypothesis predicts that continental chemical weathering diminished substantially during, but rebounded strongly after, the Marinoan ice age some 635 Mya. Defrosting the planet would result in a plume of fresh glacial meltwater with a different chemical composition from underlying hypersaline seawater, generating both vertical and lateral salinity gradients. Here, we test the plumeworld hypothesis using lithium isotope compositions in the Ediacaran Doushantuo cap dolostone that accumulated in the aftermath of the Marinoan snowball Earth along a proximal–distal (nearshore–offshore) transect in South China. Our data show an overall decreasing δ7Li trend with distance from the shoreline, consistent with the variable mixing of a meltwater plume with high δ7Li (due to incongruent silicate weathering on the continent) and hypersaline seawater with low δ7Li (due to synglacial distillation). The evolution of low δ7Li of synglacial seawater, as opposed to the modern oceans with high δ7Li, was likely driven by weak continental chemical weathering coupled with strong reverse weathering on the seafloor underneath silica-rich oceans. The spatial pattern of δ7Li is also consistent with the development and then collapse of the meltwater plume that occurred at the time scale of cap dolostone accumulation. Therefore, the δ7Li data are consistent with the plumeworld hypothesis, considerably reduced chemical weathering on the continent during the Marinoan snowball Earth, and enhanced reverse weathering on the seafloor of Precambrian oceans.more » « lessFree, publicly-accessible full text available November 12, 2025
-
The global diversity of Proterozoic eukaryote fossils is poorly quantified despite its fundamental importance to the understanding of macroevolutionary patterns and dynamics on the early Earth. Here we report a new construction of fossil eukaryote diversity from the Paleoproterozoic to early Cambrian based on a comprehensive data compilation and quantitative analyses. The resulting taxonomic richness curve verifies Cryogenian glaciations as a major divide that separates the “Boring Billion” and Ediacaran periods, with the former characterized by a prolonged stasis, and the latter by greater diversity, more-rapid turnover, and multiple radiations and extinctions. These contrasting evolutionary patterns and dynamics provide a framework to test competing hypotheses on biosphere and geosphere coevolution in the Proterozoic Eon.more » « lessFree, publicly-accessible full text available December 20, 2025