skip to main content


Search for: All records

Creators/Authors contains: "Xiao, Shuolin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    Coastal marine heatwaves (MHWs) modulate coastal climate through ocean‐land‐atmosphere interactions, but little is known about how coastal MHWs interact with coastal cities and modify urban thermal environment. In this study, a representative urban coastal environment under MHWs is simplified to a mixed convection problem. Fourteen large‐eddy simulations (LESs) are conducted to investigate how coastal cities interact with MHWs. We consider the simulations by simple urban roughness setup (Set A) as well as explicit urban roughness representation (Set B). Besides, different MHW intensities, synoptic wind speeds, surface fluxes of urban and sea patches are considered. Results suggest that increasing MHW intensity alters streamwise potential temperature gradient and vertical velocity direction. The magnitude of vertical velocity and urban heat island (UHI) intensity decrease with increasing synoptic wind speed. Changing urban or sea surface heat flux also leads to important differences in flow and temperature fields. Comparison between Set A and B reveals a significant increase of vertical velocity magnitude and UHI intensity. To further understand this phenomenon, a canopy layer UHI model is proposed to show the relationship between UHI intensity and urban canopy, thermal heterogeneity and mean advection. The effect of urban canopy is considered in terms of an additional vertical velocity scale that facilitates heat transport from the heated surface and therefore increases UHI intensity. The model can well explain the trend of the simulated results and implies that overlooking the effect of urban canopy underestimates canopy UHI in urban coastal environment.

     
    more » « less
  3. Turbulent wake flows behind helical- and straight-bladed vertical axis wind turbines (VAWTs) in boundary layer turbulence are numerically studied using the large-eddy simulation (LES) method combined with the actuator line model. Based on the LES data, systematic statistical analyses are performed to explore the effects of blade geometry on the characteristics of the turbine wake. The time-averaged velocity fields show that the helical-bladed VAWT generates a mean vertical velocity along the center of the turbine wake, which causes a vertical inclination of the turbine wake and alters the vertical gradient of the mean streamwise velocity. Consequently, the intensities of the turbulent fluctuations and Reynolds shear stresses are also affected by the helical-shaped blades when compared with those in the straight-bladed VAWT case. The LES results also show that reversing the twist direction of the helical-bladed VAWT causes the spatial patterns of the turbulent wake flow statistics to be reversed in the vertical direction. Moreover, the mass and kinetic energy transports in the turbine wakes are directly visualized using the transport tube method, and the comparison between the helical- and straight-bladed VAWT cases show significant differences in the downstream evolution of the transport tubes. 
    more » « less