skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiao, Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report herein that dendron-shaped macromolecules AB n crystallize into well-ordered pyramid-like structures from mixed solvents, instead of spherical motifs with curved structures, as found in the bulk. The design of the asymmetric molecular architecture and the choice of mixed solvents are applied as strategies to manipulate the crystallization process. In mixed solvents, the solvent selection for the Janus macromolecule and the existence of dominant crystalline clusters contribute to the formation of flat nanosheets. Whereas during solvent evaporation, the bulkiness of the asymmetric macromolecules easily creates defects within 2D nanosheets which lead to their spiral growth through screw dislocation. The size of the nanosheets and the growth into 2D nanosheets or 3D pyramidal structures can be regulated by the solvent ratio and solvent compositions. Moreover, macromolecules of higher asymmetry generate polycrystals of lower orderliness, probably due to higher localized stress. 
    more » « less
  2. Abstract Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2Oand PbB3O2, which are produced and characterized in a cluster beam. PbB2Ois found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]and the isoelectronic [Pb≡B–C≡O]/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements. 
    more » « less
  3. Abstract Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated throughχ(2)andχ(3)nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging. 
    more » « less
  4. Chirality plays an important role in nature. Nanoclusters can also exhibit chiral properties. We report herein a joint experimental and theoretical investigation on the geometric and electronic structures of B 31 − and B 32 − clusters, using photoelectron spectroscopy in combination with first-principles calculations. Two degenerate quasi-planar chiral C 1 enantiomers ( I and II , 1 A) with a central hexagonal vacancy are identified as the global minima of B 31 − . For B 32 − , two degenerate boat-like quasi-planar chiral C 2 structures ( VI and VII , 2 A) with a central hexagonal vacancy are also found as the global minima, with a low-lying chair-like C i B 32 − ( VIII , 2 A u ) also present in the experiment as a minor isomer. The chiral conversions in quasi-planar B 31 − and B 32 − clusters are investigated and relatively low barriers are found due to the high flexibility of these monolayer clusters, which feature multiple delocalized σ and π bonds over buckled molecular surfaces. 
    more » « less
  5. Since the discovery of the B 40 borospherene, research interests have been directed to the structural evolution of even larger boron clusters. An interesting question concerns if the borospherene cages persist in larger boron clusters like the fullerenes. Here we report a photoelectron spectroscopy (PES) and computational study on the structures and bonding of B 41 − and B 42 − , the largest boron clusters characterized experimentally thus far. The PE spectra of both clusters display broad and complicated features, suggesting the existence of multiple low-lying isomers. Global minimum searches for B 41 − reveal three low-lying isomers ( I–III ), which are all related to the planar B 40 − structure. Isomer II ( C s , 1 A′) possessing a double hexagonal vacancy is found to agree well with the experiment, while isomers I ( C s , 3 A′′) and III ( C s , 1 A′) both with a single hexagonal vacancy are also present as minor isomers in the experiment. The potential landscape of B 42 − is found to be much more complicated with numerous low-lying isomers ( VII–XII ). The quasi-planar structure VIII ( C 1 , 2 A) containing a double hexagonal vacancy is found to make major contributions to the observed PE spectrum of B 42 − , while the other low-lying isomers may also be present to give rise to a complicated spectral pattern. Chemical bonding analyses show isomer II of B 41 − ( C s , 1 A′) and isomer VIII of B 42 − ( C 1 , 2 A) are π aromatic, analogous to that in the polycyclic aromatic hydrocarbon C 27 H 13 + ( C 2v , 1 A 1 ). Borospherene cage isomers are also found for both B 41 − and B 42 − in the global minimum searches, but they are much higher energy isomers. 
    more » « less
  6. Abstract Self‐assembled nanostructures of rod‐like molecules are commonly limited to nematic or layered smectic structures dominated by the parallel arrangement of the rod‐like components. Distinct self‐assembly behavior of four categories of dendritic rods constructed by placing a tri(hydroxy) group at the apex of dendritic oligo‐fluorenes is observed. Designed hydrogen bonding and dendritic architecture break the parallel arrangement of the rods, resulting in molecules with specific (fan‐like or cone‐like) shapes. While the fan‐shaped molecules tend to form hexagonal packing cylindrical phases, the cone‐shaped molecules could form spherical motifs to pack into various ordered structures, including the Frank–Kasper A15 phase and dodecagonal quasicrystal. This study provides a model system to engineer diverse supramolecular structures by rod‐like molecules and sheds new light into the mechanisms of the formation of unconventional spherical packing structures in soft matter. 
    more » « less