skip to main content


Search for: All records

Creators/Authors contains: "Xie, Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 25, 2024
  2. Abstract

    Live imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third‐harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan‐ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging. pan‐ECM labels all major ECM components in live tissue including the interstitial matrix, basement membrane, and perineuronal nets. pan‐ECM enables in vivo observation of the ECM heterogeneity between the glioma core and margin, as well as the assessment of ECM deterioration under stroke condition, without ECM shrinkage from tissue fixation. These findings indicate that the pan‐ECM approach is a novel way to image the entire brain ECM in live brain tissue with optical resolution. pan‐ECM has the potential to advance the understanding of ECM in brain function and neurological diseases.

     
    more » « less
  3. null (Ed.)
  4. Abstract—Flash Disaggregation enables to share flash storage across the data center, improving resource utilization and reduc- ing the total cost of ownership (TCO). Previous work on flash disaggregation utilized costly server processors leaving significant headroom for optimizing TCO. In this work, we develop a new flash disaggregation system based on a cost-effective and power- efficient ARM-based Smart NIC. This work introduces our archi- tecture and provides a comprehensive evaluation outperforming previous work in TCO by 2.57x. 
    more » « less
  5. Abstract

    Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach usingPlasmonic nAnovesicles and cell‐based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin‐14 (SST) can be rapidly released under near‐infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.

     
    more » « less
  6. Abstract

    Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach usingPlasmonic nAnovesicles and cell‐based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin‐14 (SST) can be rapidly released under near‐infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.

     
    more » « less