skip to main content

Search for: All records

Creators/Authors contains: "Xie, Jiafeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2024
  2. Post-quantum cryptography (PQC) has drawn significant attention from various communities recently and one of the recent advances is the hardware acceleration of PQC algorithms. While Hamming Quasi-Cyclic (HQC) is one of the recently announced National Institute of Standards and Technology (NIST) fourth-round PQC standardization candidates, very few related hardware implementation works have been reported, particularly lacking solid works on important components such as the sampler. As a fixed-weight sparse vector sampler with constant-time operation is critical to the hardware HQC accelerator, in this paper, we present a novel hardware-implemented LOw-latency and ConStant-timing fixed-weight sampler (LOCS). In total, we have proposed three stages of efforts. First of all, a new algorithm for efficient realization of the fixed-weight sparse vector generation based on Fisher-Yates shuffle algorithm is proposed. Then, we have innovatively designed the algorithm into a new hardware sampler: LOCS. Finally, we have conducted a thorough comparison to showcase the efficiency of the proposed sampler, e.g., the proposed LOCS involves 66.7% less latency time than the state-of-the-art design (n=17,669) while remaining constant-time operation. To the authors' best knowledge, this is the first hardware-implemented pure constant-time (no failure probability) fixed-weight sampler for HQC. 
    more » « less
    Free, publicly-accessible full text available May 21, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. The rapid advancement in quantum technology has initiated a new round of exploration of efficient implementation of post-quantum cryptography (PQC) on hardware platforms. Key encapsulation mechanism (KEM) Saber, a module lattice-based PQC, is one of the four encryption scheme finalists in the third-round National Institute of Standards and Technology (NIST) standardization process. In this paper, we propose a novel Toeplitz Matrix-Vector Product (TMVP)-based design strategy to efficiently implement polynomial multiplication (essential arithmetic operation) for KEM Saber. The proposed work consists of three layers of interdependent efforts: (i) first of all, we have formulated the polynomial multiplication of KEM Saber into a desired mathematical form for further developing into the proposed TMVP-based algorithm for high-performance operation; (ii) then, we have followed the proposed TMVP-based algorithm to innovatively transfer the derived algorithm into a unified polynomial multiplication structure (fits all security ranks) with the help of a series of algorithm-to-architecture co-implementation/mapping techniques; (iii) finally, detailed implementation results and complexity analysis have confirmed the efficiency of the proposed TMVP design strategy. Specifically, the field-programmable gate array (FPGA) implementation results show that the proposed design has at least less 30.92% area-delay product (ADP) than the competing ones. 
    more » « less
  5. Post-quantum cryptography (PQC) has gained sub-stantial attention from various communities recently. Along with the ongoing National Institute of Standards and Technology (NIST) PQC standardization process that targets the general-purpose PQC algorithms, the research community is also looking for efficient lightweight PQC schemes. Among this direction of efforts, Ring-Binary-Learning-with-Errors (RBLWE)-based encryption scheme (RBLWE-ENC) is regarded as a promising lightweight PQC fitting Internet-of-Things (IoT) and edge computing applications. As hardware implementation for PQC algorithms has become one of the major advances in the field, in this paper, we follow this trend to present an efficient implementation of RBLWE-ENC lightweight accelerator on the field-programmable gate array (FPGA) platform. Overall, we have demonstrated three coherent interdependent stages of efforts: (i) we have presented detailed derivation processes to formulate the proposed algorithmic operation; (ii) we have then implemented the proposed algorithm into a desired hardware accelerator; and (iii) we provided thorough complexity analysis and comparison to showcase the superior performance of the proposed accelerator over the state-of-the-art designs, e.g., the proposed accelerator with v=8 has at least 66.67% less area-time complexities than the existing ones (Virtex-7 FPGA). We hope the outcome of this work can facilitate lightweight PQC development. 
    more » « less
  6. The recent research in post-quantum cryptography (PQC) field has gradually switched to efficient implementation of PQC algorithms on hardware platforms. As polynomial multiplication is typically one of the critical operations within lattice-based PQC, its hardware acceleration has drawn significant attention from the research community recently. We propose a high-speed processing strategy to construct a new High-performance Polynomial Multiplication Accelerator (HPMA) for key encapsulation mechanism (KEM) Saber. Firstly, we have given a detailed mathematical derivation to obtain a low-latency processing algorithm for Saber polynomial multiplication. Then, we have innovatively used the derived the proposed algorithm to construct a new structure HPMA for FPGA implementation. Lastly, we have demonstrated the superior performance of the proposed HPMA-Saber by comparing with state-of-the-art works. The proposed design strategy is highly efficient and the obtained results can be useful for the PQC research community. 
    more » « less
  7. Along the rapid development of large-scale quantum computers, post-quantum cryptography (PQC) has drawn significant attention from research community recently as it is proven that the existing public-key cryptosystems are vulnerable to the quantum attacks. Meanwhile, the recent trend in the PQC field has gradually switched to the hardware acceleration aspect. Following this trend, this work presents a novel implementation of a High-performance Polynomial Multiplication hardware Accelerator for NTRU (HPMA-NTRU) under different parameter settings, one of the lattice-based PQC algorithm that is currently under the consideration by the National Institute of Standards and Technology (NIST) PQC standardization process. In total, we have carried out three layers of efforts to obtain the proposed work. First of all, we have proposed a new schoolbook algorithm based strategy to derive the desired polynomial multiplication algorithm for NTRU. Then, we have mapped the algorithm to build a high-performance polynomial multiplication hardware accelerator and have extended this hardware accelerator to different parameter settings with proper adjustment. Finally, through a series of complexity analysis and implementation based comparison, we have shown that the proposed hardware accelerator obtains better area-time complexities than the state-of-the-art one. The outcome of this work is important and will impact the ongoing NIST PQC standardization process and can be deployed further to construct efficient NTRU cryptoprocessors. 
    more » « less