skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Ke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal-organic frameworks (MOFs) with tunable structures and unique host-guest chemistry have emerged as promising candidates for conductive materials. However, the tunability of conductivity and porosity in conductive MOFs and their interrelationship still lack a systematic study. Herein, we report the synthesis of a series of 3D copper MOFs (NU-4000 to NU-4003) using a triphenylene-based hexatopic carboxylate linker. By modulating the ratio of mixed solvents, distinct structural topologies and π-π stacking arrangements were achieved, resulting in electrical conductivity ranging from insulators (˂ 10-6 S/cm) to semiconductors (10-8 ~ 102 S/cm). Among them, NU-4003 features continuous π-π stacking and exhibits a conductivity of 1.7 × 10-6 S/cm. To further enhance conductivity, we encapsulated C60, a strong electron acceptor, within the circular channels of NU-4003, resulting in a remarkable conductivity increase to 140 S/cm with approximately 100% pore occupancy. Even at lower C60 loadings that leave 54% of the pore volume remaining accessible, the conductivity remains exceptionally high at 104 S/cm. This represents an eight-order magnitude enhancement and positions NU-4003-C60 as one of the most conductive 3D MOFs reported to date. This work integrates two charge transport pathways (through-space and electron donor and acceptor) into a single MOF host-guest material, achieving a significant enhancement in conductivity. This study demonstrates the potential of combining host-guest chemistry and π-π stacking to design conductive MOFs with permanent porosity maintained, providing a blueprint for the development of next-generation materials for electronic and energy-related applications. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  2. A bstract We propose a new scenario of leptogenesis, which is triggered by a first-order phase transition (FOPT). The right-handed neutrinos (RHNs) are massless in the old vacuum, while they acquire a mass in the new vacuum bubbles, and the mass gap is huge compared with the FOPT temperature. The ultra-relativistic bubble walls sweep the RHNs into the bubbles, where the RHNs experience fast decay and generate the lepton asymmetry, which is further converted to the baryon asymmetry of the Universe (BAU). Since the RHNs are out of equilibrium inside the bubble, the generated BAU does not suffer from the thermal bath washout. We first discuss the general feature of such a FOPT leptogenesis mechanism, and then realize it in an extended B − L model. The gravitational waves from U(1) B−L breaking could be detected at the future interferometers. 
    more » « less
  3. The nitrogen cycle needed for scaled agriculture relies on energy- and carbon-intensive processes and generates nitrate-containing wastewater. Here we focus on an alternative approach—the electrified co-electrolysis of nitrate and CO2 to synthesize urea. When this is applied to industrial wastewater or agricultural runoff, the approach has the potential to enable low-carbon-intensity urea production while simultaneously providing wastewater denitrification. We report a strategy that increases selectivity to urea using a hybrid catalyst: two classes of site independently stabilize the key intermediates needed in urea formation, *CO2NO2 and *COOHNH2, via a relay catalysis mechanism. A Faradaic efficiency of 75% at wastewater-level nitrate concentrations (1,000 ppm NO3− [N]) is achieved on Zn/Cu catalysts. The resultant catalysts show a urea production rate of 16 µmol h−1 cm−2. Life-cycle assessment indicates greenhouse gas emissions of 0.28 kg CO2e per kg urea for the electrochemical route, compared to 1.8 kg CO2e kg−1 for the present-day route. 
    more » « less
  4. Abstract Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal—including inflation, phase transitions, topological defects, as well as primordial black holes—and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe. 
    more » « less