skip to main content

Search for: All records

Creators/Authors contains: "Xie, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB 2 during compression induces superconductivity above 50 GPa with a maximum superconducting critical temperature, T c of 17 K at 91 GPa. Upon further compression up to 187 GPa, the T c gradually decreases. Theoretical calculations show that electron-phonon mediated superconductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB 2 (hP3, space group 191, prototype AlB 2 ). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB 2 ) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials. 
    more » « less
  2. Is intelligence realized by connectionist or classicist? While connectionist approaches have achieved superhuman performance, there has been growing evidence that such task-specific superiority is particularly fragile in systematic generalization. This observation lies in the central debate between connectionist and classicist, wherein the latter continually advocates an algebraic treatment in cognitive architectures. In this work, we follow the classicist’s call and propose a hybrid approach to improve systematic generalization in reasoning. Specifically, we showcase a prototype with algebraic representation for the abstract spatial-temporal reasoning task of Raven’s Progressive Matrices (RPM) and present the ALgebra-Aware Neuro-Semi-Symbolic (ALANS) learner. The ALANS learner is motivated by abstract algebra and the representation theory. It consists of a neural visual perception frontend and an algebraic abstract reasoning backend: the frontend summarizes the visual information from object-based representation, while the backend transforms it into an algebraic structure and induces the hidden operator on the fly. The induced operator is later executed to predict the answer’s representation, and the choice most similar to the prediction is selected as the solution. Extensive experiments show that by incorporating an algebraic treatment, the ALANS learner outperforms various pure connectionist models in domains requiring systematic generalization. We further show the generative nature of the learned algebraic representation; it can be decoded by isomorphism to generate an answer. 
    more » « less
  3. Abstract The relationship between extreme precipitation intensity and temperature has been comprehensively studied over different regions worldwide. However, the effect of temperature on the spatiotemporal organization of precipitation, which can have a significant impact on precipitation intensity, has not been adequately studied or understood. In this study, we propose a novel approach to quantifying the spatial and temporal concentration of precipitation at the event level and study how the concentration varies with temperature. The results based on rain gauge data from 843 stations in the Ganzhou county, a humid region in south China, show that rain events tend to be more concentrated both temporally and spatially at higher temperature, and this increase in concentration qualitatively holds for events of different precipitation amounts and durations. The effects of temperature on precipitation organization in space and in time differ at high temperatures. The temporal concentration increases with temperature up to a threshold (approximately 24°C) beyond which it plateaus, whereas the spatial concentration keeps rising with temperature. More concentrated precipitation, in addition to a projected increase of extreme precipitation, would intensify flooding in a warming world, causing more detrimental effects. 
    more » « less
  4. Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in generative modeling. Fueled by its flexibility in the formulation and strong modeling power of the latent space, recent works built upon it have made interesting attempts aiming at the interpretability of text modeling. However, latent space EBMs also inherit some flaws from EBMs in data space; the degenerate MCMC sampling quality in practice can lead to poor generation quality and instability in training, especially on data with complex latent structures. Inspired by the recent efforts that leverage diffusion recovery likelihood learning as a cure for the sampling issue, we introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework, coined as the latent diffusion energy-based model. We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space. Experiments on several challenging tasks demonstrate the superior performance of our model on interpretable text modeling over strong counterparts. 
    more » « less
  5. Abstract

    A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.

    more » « less
    Free, publicly-accessible full text available February 1, 2025
  6. null (Ed.)
  7. Neural networks are often represented as graphs of connections between neurons. However, despite their wide use, there is currently little understanding of the relationship between the graph structure of the neural network and its predictive performance. Here we systematically investigate how does the graph structure of neural networks affect their predictive performance. To this end, we develop a novel graph-based representation of neural networks called relational graph, where layers of neural network computation correspond to rounds of message exchange along the graph structure. Using this representation we show that: (1) a “sweet spot” of relational graphs leads to neural networks with significantly improved predictive performance; (2) neural network’s performance is approximately a smooth function of the clustering coefficient and average path length of its relational graph; (3) our findings are consistent across many different tasks and datasets; (4) the sweet spot can be identified efficiently; (5) topperforming neural networks have graph structure surprisingly similar to those of real biological neural networks. Our work opens new directions for the design of neural architectures and the understanding on neural networks in general. 
    more » « less
  8. Abstract

    Links between hydrology and sliding of the Greenland Ice Sheet (GrIS) are poorly understood. Here, we monitored meltwater's propagation through the glacial hydrologic system for catchments at different elevations by quantifying the lag cascade as daily meltwater pulses traveled through the supraglacial, englacial, and subglacial drainage systems. We found that meltwater's residence time within supraglacial catchments—depending upon area, snow cover, and degree of channelization—controls the timing of peak moulin head, resulting in the 2 hr later peak observed at higher elevations. Unlike at lower elevations where peak moulin head and peak sliding coincided, at higher elevations peak sliding lagged peak moulin head by ∼2.8 hr. This delay was likely caused by the area's lower moulin density, which required diurnal pressure oscillations to migrate further into the distributed drainage system to elicit the observed velocity response. These observations highlight the supraglacial drainage system's control on coupling GrIS subglacial hydrology and sliding.

    more » « less