- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gui, Changfeng (2)
-
Hu, Yeyao (2)
-
Xie, Weihong (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We show that axially symmetric solutions on\mathbb{S}^4to a constantQ-curvature type equation (it may also be called fourth order mean field equation) must be constant, provided that the parameter\alphain front of the Paneitz operator belongs to the interval[\frac{473 + \sqrt{209329}}{1800}\approx 0.517, 1). This is in contrast to the case\alpha=1, where there exists a family of solutions, known as standard bubbles. The phenomenon resembles the Gaussian curvature equation on\mathbb{S}^2. As a consequence, we prove an improved Beckner's inequality on\mathbb{S}^4for axially symmetric functions with their centers of mass at the origin. Furthermore, we show uniqueness of axially symmetric solutions when\alpha=1/5by exploiting Pohozaev-type identities, and prove the existence of a non-constant axially symmetric solution for\alpha \in (1/5, 1/2)via a bifurcation method.more » « less
-
Gui, Changfeng; Hu, Yeyao; Xie, Weihong (, Journal of Functional Analysis)
An official website of the United States government
