skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Weiwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study systematically investigates the magnetic properties of the layered ferromagnet MnPt5As under pressure through a combination of experimental measurements and theoretical simulations. MnPt5As exhibits a ferromagnetic transition at approximately 301 K. Neutron diffraction measurements under applied pressures up to ∼4.9 GPa were performed over a temperature range from 320 to 100 K to probe its magnetic behavior. The results confirm that the Mn atoms maintain a ferromagnetic order under applied pressures, consistent with the ambient-pressure findings. However, magnetic anisotropy is notably suppressed. To further elucidate the compressibility of magnetic anisotropy in MnPt5As, x-ray diffraction under pressure was conducted. The results reveal that the c-axis undergoes a greater and more rapid compression compared to the ab-plane, which may contribute to the observed suppression of Mn ferromagnetic ordering along the c-axis. Additionally, theoretical calculations indicate that magnetic ordering exhibits a similar pressure-induced trend under applied pressure, supporting the experimental observations. These findings offer insights into the pressure-dependent magnetic properties and anisotropy of MnPt5As, with potential implications for strain engineering in Mn-based magnetic devices. 
    more » « less
  2. Free, publicly-accessible full text available September 22, 2026
  3. Pyroxenes (AMX2O6) consisting of infinite one-dimensional edge-sharing MO6chains and bridging XO4tetrahedra are fertile ground for finding quantum materials. Thus, here, we have studied calcium cobalt germanate (CaCoGe2O6) and calcium cobalt silicate (CaCoSi2O6) crystals in depth. Heat capacity data show that the spins in both compounds are dominantly Ising-like, even after being manipulated by high magnetic fields. On cooling below the Néel temperatures, a sharp field–induced transition in magnetization is observed for CaCoGe2O6, while multiple magnetization plateaus beneath the full saturation moment are spotted for CaCoSi2O6. Our analysis shows that these contrasting behaviors potentially arise from the different electron configurations of germanium and silicon, in which the 3d orbitals are filled in the former but empty in the latter, enabling electron hopping. Thus, silicate tetrahedra can aid the interchain superexchange pathway between cobalt(II) ion centers, while germanate ones tend to block it during magnetization. 
    more » « less
  4. Abstract Dirac materials offer exciting opportunities to explore low-energy carrier dynamics and novel physical phenomena, especially their interaction with magnetism. In this context, this work focuses on studies of pressure control on the magnetic state of EuMnBi2, a representative magnetic Dirac semimetal, through time-domain synchrotron Mössbauer spectroscopy in151Eu. Contrary to the previous report that the antiferromagnetic order is suppressed by pressure above 4 GPa, we have observed robust magnetic order up to 33.1 GPa. Synchrotron-based x-ray diffraction experiment on a pure EuMnBi2sample shows that the tetragonal crystal lattice remains stable up to at least 31.7 GPa. 
    more » « less
  5. Multiferroic materials host both ferroelectricity and magnetism, offering potential for magnetic memory and spin transistor applications. Here, we report a multiferroic chalcogenide semiconductor Cu1−xMn1+ySiTe3(0.04 ≤x≤ 0.26; 0.03 ≤y≤ 0.15), which crystallizes in a polar monoclinic structure (Pmspace group). It exhibits a canted antiferromagnetic state below 35 kelvin, with magnetic hysteresis and remanent magnetization under 15 kelvin. We demonstrate multiferroicity and strong magnetoelectric coupling through magnetodielectric and magnetocurrent measurements. At 10 kelvin, the magnetically induced electric polarization reaches ~0.8 microcoulombs per square centimeter, comparable to the highest value in oxide multiferroics. We also observe possible room-temperature ferroelectricity. Given that multiferroicity is very rare among transition metal chalcogenides, our finding sets up a unique materials platform for designing multiferroic chalcogenides. 
    more » « less