skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Xie, Xiaoyou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the expected number of real zeros for random linear combinations of orthogonal polynomials. It is well known that Kac polynomials, spanned by monomials with i.i.d. Gaussian coefficients, have only $(2/\pi + o(1))\log{n}$ expected real zeros in terms of the degree $n$. If the basis is given by the orthonormal polynomials associated with a compactly supported Borel measure on the real line, or associated with a Freud weight, then random linear combinations have $n/\sqrt{3} + o(n)$ expected real zeros. We prove that the same asymptotic relation holds for all random orthogonal polynomials on the real line associated with a large class of weights, and give local results on the expected number of real zeros. We also show that the counting measures of properly scaled zeros of these random polynomials converge weakly to either the Ullman distribution or the arcsine distribution. 
    more » « less