skip to main content


Search for: All records

Creators/Authors contains: "Xie, Yao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 2, 2025
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available June 4, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Abstract

    Two-sample tests are important areas aiming to determine whether two collections of observations follow the same distribution or not. We propose two-sample tests based on integral probability metric (IPM) for high-dimensional samples supported on a low-dimensional manifold. We characterize the properties of proposed tests with respect to the number of samples $n$ and the structure of the manifold with intrinsic dimension $d$. When an atlas is given, we propose a two-step test to identify the difference between general distributions, which achieves the type-II risk in the order of $n^{-1/\max \{d,2\}}$. When an atlas is not given, we propose Hölder IPM test that applies for data distributions with $(s,\beta )$-Hölder densities, which achieves the type-II risk in the order of $n^{-(s+\beta )/d}$. To mitigate the heavy computation burden of evaluating the Hölder IPM, we approximate the Hölder function class using neural networks. Based on the approximation theory of neural networks, we show that the neural network IPM test has the type-II risk in the order of $n^{-(s+\beta )/d}$, which is in the same order of the type-II risk as the Hölder IPM test. Our proposed tests are adaptive to low-dimensional geometric structure because their performance crucially depends on the intrinsic dimension instead of the data dimension.

     
    more » « less
  8. Free, publicly-accessible full text available April 3, 2024
  9. We consider the sequential anomaly detection problem in the one-class setting when only the anomalous sequences are available and propose an adversarial sequential detector by solving a minimax problem to find an optimal detector against the worst-case sequences from a generator. The generator captures the dependence in sequential events using the marked point process model. The detector sequentially evaluates the likelihood of a test sequence and compares it with a time-varying threshold, also learned from data through the minimax problem. We demonstrate our proposed method’s good performance using numerical experiments on simulations and proprietary large-scale credit card fraud data sets. The proposed method can generally apply to detecting anomalous sequences. History: W. Nick Street served as the senior editor for this article. Funding: This work is partially supported by the National Science Foundation [Grants CAREER CCF-1650913, DMS-1938106, and DMS-1830210] and grant support from Macy’s Technology. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://doi.org/10.24433/CO.2329910.v1 and in the e-Companion to this article (available at https://doi.org/10.1287/ijds.2023.0026 ). 
    more » « less
    Free, publicly-accessible full text available April 1, 2024