skip to main content


Search for: All records

Creators/Authors contains: "Xie, Yijun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A grating coupler on 700-nm-thick Z-cut lithium-niobate-on-insulator platform with high coupling efficiency, large bandwidth, and high fabrication tolerance is designed and optimized by inverse design method. The optimized grating coupler is fabricated with a single set of e-beam lithography and etching process, and it is experimentally characterized to possess peak coupling efficiency of −3.8 dB at 1574.93 nm, 1 dB bandwidth of 71.7 nm, and 3 dB bandwidth of over 120 nm, respectively.

     
    more » « less
    Free, publicly-accessible full text available January 29, 2025
  2. Broadband frequency comb generation through cascaded quadratic nonlinearity remains experimentally untapped in free-space cavities with bulk χ(2)materials mainly due to the high threshold power and restricted ability of dispersion engineering. Thin-film lithium niobate (LN) is a good platform for nonlinear optics due to the tight mode confinement in a nano-dimensional waveguide, the ease of dispersion engineering, large quadratic nonlinearities, and flexible phase matching via periodic poling. Here we demonstrate broadband frequency comb generation through dispersion engineering in a thin-film LN microresonator. Bandwidths of 150 nm (80 nm) and 25 nm (12 nm) for center wavelengths at 1560 and 780 nm are achieved, respectively, in a cavity-enhanced second-harmonic generation (doubly resonant optical parametric oscillator). Our demonstration paves the way for pure quadratic soliton generation, which is a great complement to dissipative Kerr soliton frequency combs for extended interesting nonlinear applications.

     
    more » « less
  3. Abstract

    Dissipative Kerr soliton (DKS) frequency combs—also known as microcombs—have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only adds new degrees of freedom to ultrafast laser technology, but also provides new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry–Pérot (FP) mesoresonator based on graded index multimode fiber (GRIN-MMF). Complementing the two-step pumping scheme with a cavity stress tuning method, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond (averaging times up to 25 μs) represent improvements of 25× and 2.5×, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP mesoresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

     
    more » « less
  4. Abstract

    Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton’s cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.

     
    more » « less
  5. Kerr microcombs hold the promise of bringing frequency combs onto the chip and into a variety of applications requiring low size, weight, power, and cost. However, reliable Kerr microcomb generation is hindered by the thermal effect and multistability of dissipative Kerr solitons (DKSs). Past approaches toward Kerr microcomb reliability include either deterministic single-soliton generation or self-starting soliton behavior but not both. Here we describe a regime of DKSs that isbothdeterministic and self-starting, in which only a single soliton can stably exist. We term this new DKS regime “monostable DKSs” (MS-DKSs) as all other optical behaviors, such as continuous-wave-only and multiple solitons, are fundamentally forbidden by the design. We establish a graphical model to describe MS-DKSs and discuss the design principles of MS-DKSs. We numerically demonstrate the MS-DKS behavior in an example periodically poled lithium niobate microring resonator.

     
    more » « less
  6. Time-correlated single-photon counting (TCSPC) is an enabling technology for applications such as low-light fluorescence lifetime microscopy and photon counting time-of-flight (ToF) 3D imaging. However, state-of-the-art TCSPC single-photon timing resolution (SPTR) is limited to 3–100 ps by single-photon detectors. Here, we experimentally demonstrate a time-magnified TCSPC (TM-TCSPC) that achieves an ultrashort SPTR of 550 fs with an off-the-shelf single-photon detector. The TM-TCSPC can resolve ultrashort pulses with a 130-fs pulse width difference at a 22-fs accuracy. When applied to photon counting ToF 3D imaging, the TM-TCSPC greatly suppresses the range walk error that limits all photon counting ToF 3D imaging systems by 99.2% and thus provides high depth accuracy and precision of 26 µm and 3 µm, respectively.

     
    more » « less