skip to main content


Search for: All records

Creators/Authors contains: "Xiong, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 6, 2024
  2. Example-guided image synthesis has been recently attempted to synthesize an image from a semantic label map and an exemplary image. In the task, the additional exemplary image serves to provide style guidance that controls the appearance of the synthesized output. Despite the controllability advantage, the previous models are designed on datasets with specific and roughly aligned objects. In this paper, we tackle a more challenging and general task, where the exemplar is an arbitrary scene image that is semantically unaligned to the given label map. To this end, we first propose a new Masked Spatial-Channel Attention (MSCA) module which models the correspondence between two unstructured scenes via cross-attention. Next, we propose an end-to-end network for joint global and local feature alignment and synthesis. In addition, we propose a novel patch-based self-supervision scheme to enable training. Experiments on the large-scale CCOO-stuff dataset show significant improvements over existing methods. Moreover, our approach provides interpretability and can be readily extended to other tasks including style and spatial interpolation or extrapolation, as well as other content manipulation. 
    more » « less
  3. Existing image-to-image transformation approaches primarily focus on synthesizing visually pleasing data. Generating images with correct identity labels is challenging yet much less explored. It is even more challenging to deal with image transformation tasks with large deformation in poses, viewpoints, or scales while preserving the identity, such as face rotation and object viewpoint morphing. In this paper, we aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image, which can thereby benefit the subsequent fine-grained image recognition and few-shot learning tasks. The generated images, transformed with large geometric deformation, do not necessarily need to be of high visual quality but are required to maintain as much identity information as possible. To this end, we adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image. In order to preserve the fine-grained contextual details of the input image during the deformable transformation, a constrained nonalignment connection method is proposed to construct learnable highways between intermediate convolution blocks in the generator. Moreover, an adaptive identity modulation mechanism is proposed to transfer the identity information into the output image effectively. Extensive experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models, and as a result significantly boosts the visual recognition performance in fine-grained few-shot learning. 
    more » « less
  4. Free, publicly-accessible full text available July 1, 2025