skip to main content


Search for: All records

Creators/Authors contains: "Xu, Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Near-term quantum computers are expected to work in an environment where each operation is noisy, with no error correction. Therefore, quantum-circuit optimizers are applied to minimize the number of noisy operations. Today, physicists are constantly experimenting with novel devices and architectures. For every new physical substrate and for every modification of a quantum computer, we need to modify or rewrite major pieces of the optimizer to run successful experiments. In this paper, we present QUESO, an efficient approach for automatically synthesizing a quantum-circuit optimizer for a given quantum device. For instance, in 1.2 minutes, QUESO can synthesize an optimizer with high-probability correctness guarantees for IBM computers that significantly outperforms leading compilers, such as IBM's Qiskit and TKET, on the majority (85%) of the circuits in a diverse benchmark suite. A number of theoretical and algorithmic insights underlie QUESO: (1) An algebraic approach for representing rewrite rules and their semantics. This facilitates reasoning about complex symbolic rewrite rules that are beyond the scope of existing techniques. (2) A fast approach for probabilistically verifying equivalence of quantum circuits by reducing the problem to a special form of polynomial identity testing . (3) A novel probabilistic data structure, called a polynomial identity filter (PIF), for efficiently synthesizing rewrite rules. (4) A beam-search-based algorithm that efficiently applies the synthesized symbolic rewrite rules to optimize quantum circuits. 
    more » « less
    Free, publicly-accessible full text available June 6, 2024
  2. P4 is a domain-specific language for programming and specifying packet-processing systems. It is based on an elegant design with high-level abstractions like parsers and match-action pipelines that can be compiled to efficient implementations in software or hardware. Unfortunately, like many industrial languages, P4 has developed without a formal foundation. The P4 Language Specification is a 160-page document with a mixture of informal prose, graphical diagrams, and pseudocode, leaving many aspects of the language semantics up to individual compilation targets. The P4 reference implementation is a complex system, running to over 40KLoC of C++ code, with support for only a few targets. Clearly neither of these artifacts is suitable for formal reasoning about P4 in general. This paper presents a new framework, called Petr4, that puts P4 on a solid foundation. Petr4 consists of a clean-slate definitional interpreter and a core calculus that models a fragment of P4. Petr4 is not tied to any particular target: the interpreter is parameterized over an interface that collects features delegated to targets in one place, while the core calculus overapproximates target-specific behaviors using non-determinism. We have validated the interpreter against a suite of over 750 tests from the P4 reference implementation, exercising our target interface with tests for different targets. We validated the core calculus with a proof of type-preserving termination. While developing Petr4, we reported dozens of bugs in the language specification and the reference implementation, many of which have been fixed. 
    more » « less