Rejecting cosmic rays (CRs) is essential for the scientific interpretation of CCD-captured data, but detecting CRs in single-exposure images has remained challenging. Conventional CR detectors require experimental parameter tuning for different instruments, and recent deep-learning methods only produce instrument-specific models that suffer from performance loss on telescopes not included in the training data. We present Cosmic-CoNN, a generic CR detector deployed for 24 telescopes at the Las Cumbres Observatory, which has been made possible by the three contributions in this work: (1) We build a large and diverse ground-based CR data set leveraging thousands of images from a global telescope network. (2) We propose a novel loss function and a neural network optimized for telescope imaging data to train generic CR-detection models. At 95% recall, our model achieves a precision of 93.70% on Las Cumbres imaging data and maintains a consistent performance on new ground-based instruments never used for training. Specifically, the Cosmic-CoNN model trained on the Las Cumbres CR data set maintains high precisions of 92.03% and 96.69% on Gemini GMOS-N/S 1 × 1 and 2 × 2 binning images, respectively. (3) We build a suite of tools including an interactive CR mask visualization and editing interface, consolemore »
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
20
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Howell, D. Andrew (2)
-
McCully, Curtis (2)
-
Xu, Chengyuan (2)
-
Anand, Gagandeep S. (1)
-
Andrews, Jennifer E. (1)
-
Arcavi, Iair (1)
-
Bersten, Melina C. (1)
-
Bilinski, Christopher (1)
-
Bostroem, K. Azalee (1)
-
Brown, Peter J. (1)
-
Burke, Jamison (1)
-
Dong, Boning (1)
-
Dong, Yize (1)
-
Filippenko, Alexei V. (1)
-
Folatelli, Gastón (1)
-
Goldberg, Jared A. (1)
-
Hiramatsu, Daichi (1)
-
Hosseinzadeh, Griffin (1)
-
Itagaki, Koichi (1)
-
Kelly, Patrick L. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
A. E. Lischka (0)
-
A. E. Lischka, E. B. (0)
-
A. E. Lischka, E.B. Dyer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Hiramatsu, Daichi ; Howell, D. Andrew ; Van Dyk, Schuyler D. ; Goldberg, Jared A. ; Maeda, Keiichi ; Moriya, Takashi J. ; Tominaga, Nozomu ; Nomoto, Ken’ichi ; Hosseinzadeh, Griffin ; Arcavi, Iair ; et al ( , Nature Astronomy)