skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Xu, Guoqing Harry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the trend of incorporating heterogeneity and specialization in hardware, the development of heterogeneous applications is limited to a handful of engineers with deep hardware expertise. We propose HeteroGen that takes C/C++ code as input and automatically generates an HLS version with test behavior preservation and better performance. Key to the success of HeteroGen is adapting the idea of search-based program repair to the heterogeneous computing domain, while addressing two technical challenges. First, the turn-around time of HLS compilation and simulation is much longer than the usual C/C++ compilation and execution time; therefore, HeteroGen applies pattern-oriented program edits guided by common fix patterns and their dependences. Second, behavior and performance checking requires testing, but test cases are often unavailable. Thus, HeteroGen auto-generates test inputs suitable for checking C to HLS-C conversion errors, while providing high branch coverage for the original C code. An evaluation of HeteroGen shows that it produces an HLS-compatible version for nine out of ten real-world heterogeneous applications fully automatically, applying up to 438 lines of edits to produce an HLS version 1.63x faster than the original version. 
    more » « less
  2. Finkbeiner, B. (Ed.)
    Event-driven architectures are broadly used for systems that must respond to events in the real world. Event-driven applications are prone to concurrency bugs that involve subtle errors in reasoning about the ordering of events. Unfortunately, there are several challenges in using existing model-checking techniques on these systems. Event-driven applications often loop indefinitely and thus pose a challenge for stateless model checking techniques. On the other hand, deploying purely stateful model checking can explore large sets of equivalent executions. In this work, we explore a new technique that combines dynamic partial order reduction with stateful model checking to support non-terminating applications. Our work is (1) the first dynamic partial order reduction algorithm for stateful model checking that is sound for non-terminating applications and (2) the first dynamic partial reduction algorithm for stateful model checking of event-driven applications. We experimented with the IoTCheck dataset—a study of interactions in smart home app pairs. This dataset consists of app pairs originated from 198 real-world smart home apps. Overall, our DPOR algorithm successfully reduced the search space for the app pairs, enabling 69 pairs of apps that did not finish without DPOR to finish and providing a 7× average speedup. 
    more » « less