skip to main content

Search for: All records

Creators/Authors contains: "Xu, Jinbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Template-based modeling, including homology modeling and protein threading, is a popular method for protein 3D structure prediction. However, alignment generation and template selection for protein sequences without close templates remain very challenging.

    Results

    We present a new method called DeepThreader to improve protein threading, including both alignment generation and template selection, by making use of deep learning (DL) and residue co-variation information. Our method first employs DL to predict inter-residue distance distribution from residue co-variation and sequential information (e.g. sequence profile and predicted secondary structure), and then builds sequence-template alignment by integrating predicted distance information and sequential features through an ADMM algorithm. Experimental results suggest that predicted inter-residue distance is helpful to both protein alignment and template selection especially for protein sequences without very close templates, and that our method outperforms currently popular homology modeling method HHpred and threading method CNFpred by a large margin and greatly outperforms the latest contact-assisted protein threading method EigenTHREADER.

    Availability and implementation

    http://raptorx.uchicago.edu/

    Supplementary information

    Supplementary data are available at Bioinformatics online.

  2. Abstract Motivation

    Protein intrinsically disordered regions (IDRs) play an important role in many biological processes. Two key properties of IDRs are (i) the occurrence is proteome-wide and (ii) the ratio of disordered residues is about 6%, which makes it challenging to accurately predict IDRs. Most IDR prediction methods use sequence profile to improve accuracy, which prevents its application to proteome-wide prediction since it is time-consuming to generate sequence profiles. On the other hand, the methods without using sequence profile fare much worse than using sequence profile.

    Method

    This article formulates IDR prediction as a sequence labeling problem and employs a new machine learning method called Deep Convolutional Neural Fields (DeepCNF) to solve it. DeepCNF is an integration of deep convolutional neural networks (DCNN) and conditional random fields (CRF); it can model not only complex sequence–structure relationship in a hierarchical manner, but also correlation among adjacent residues. To deal with highly imbalanced order/disorder ratio, instead of training DeepCNF by widely used maximum-likelihood, we develop a novel approach to train it by maximizing area under the ROC curve (AUC), which is an unbiased measure for class-imbalanced data.

    Results

    Our experimental results show that our IDR prediction method AUCpreD outperforms existing popular disorder predictors. More importantly,more »AUCpreD works very well even without sequence profile, comparing favorably to or even outperforming many methods using sequence profile. Therefore, our method works for proteome-wide disorder prediction while yielding similar or better accuracy than the others.

    Availability and Implementation

    http://raptorx2.uchicago.edu/StructurePropertyPred/predict/

    Contact

    wangsheng@uchicago.edu, jinboxu@gmail.com

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  3. Abstract Motivation

    As an increasing amount of protein–protein interaction (PPI) data becomes available, their computational interpretation has become an important problem in bioinformatics. The alignment of PPI networks from different species provides valuable information about conserved subnetworks, evolutionary pathways and functional orthologs. Although several methods have been proposed for global network alignment, there is a pressing need for methods that produce more accurate alignments in terms of both topological and functional consistency.

    Results

    In this work, we present a novel global network alignment algorithm, named ModuleAlign, which makes use of local topology information to define a module-based homology score. Based on a hierarchical clustering of functionally coherent proteins involved in the same module, ModuleAlign employs a novel iterative scheme to find the alignment between two networks. Evaluated on a diverse set of benchmarks, ModuleAlign outperforms state-of-the-art methods in producing functionally consistent alignments. By aligning Pathogen–Human PPI networks, ModuleAlign also detects a novel set of conserved human genes that pathogens preferentially target to cause pathogenesis.

    Availability

    http://ttic.uchicago.edu/∼hashemifar/ModuleAlign.html

    Contact

    canzar@ttic.edu or j3xu.ttic.edu

    Supplementary information

    Supplementary data are available at Bioinformatics online.