skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Unique temperature dependences of the out-of-plane anomalous Hall effect and longitudinal magnetoresistance were observed, which can be attributed to the changing dominance between ferromagnetic and antiferromagnetic phases in the Fe3GeTe2sample. 
    more » « less
  3. In an epoch dominated by escalating concerns over climate change and looming energy crises, the imperative to design highly efficient catalysts that can facilitate the sequestration and transformation of carbon dioxide (CO2) into beneficial chemicals is paramount. This research presents the successful synthesis of nanofiber catalysts, incorporating monometallic nickel (Ni) and cobalt (Co) and their bimetallic blend, NiCo, via a facile electrospinning technique, with precise control over the Ni/Co molar ratios. Application of an array of advanced analytical methods, including SEM, TGA–DSC, FTIR-ATR, XRD, Raman, XRF, and ICP-MS, validated the effective integration and homogeneous distribution of active Ni/Co catalysts within the nanofibers. The catalytic performance of these mono- and bimetallic Ni/Co nanofiber catalysts was systematically examined under ambient pressure conditions for CO2 hydrogenation reactions. The bimetallic NiCo nanofiber catalysts, specifically with a Ni/Co molar ratio of 1:2, and thermally treated at 1050 °C, demonstrated a high CO selectivity (98.5%) and a marked increase in CO2 conversion rate—up to 16.7 times that of monometallic Ni nanofiber catalyst and 10.8 times that of the monometallic Co nanofiber catalyst. This significant enhancement in catalytic performance is attributed to the improved accessibility of active sites, minimized particle size, and the strong Ni–Co–C interactions within these nanofiber structures. These nanofiber catalysts offer a unique model system that illuminates the fundamental aspects of supported catalysis and accentuates its crucial role in addressing pressing environmental challenges. 
    more » « less
  4. Lateral multiheterostructures with spatially modulated bandgaps have great potential for applications in high-performance electronic, optoelectronic and thermoelectric devices. Multiheterostructures based on transition metal tellurides are especially promising due to their tunable bandgap in a wide range and the rich variety of structural phases. However, the synthesis of telluride-based multiheterostructures remains a challenge due to the low activity of tellurium and the poor thermal stability of tellurium alloys. In this work, we synthesized monolayer WSe 2−2 x Te 2 x /WSe 2−2 y Te 2 y ( x > y ) multiheterostructures in situ using chemical vapor deposition (CVD). Photoluminescence analysis and Raman mapping confirm the spatial modulation of the bandgap in the radial direction. Furthermore, field-effect transistors with the channels parallel (type I) and perpendicular (type II) to the multiheterostructure rings were fabricated. Type I transistors exhibit enhanced ambipolar transport, due to the low energy bridges between the source and drain. Remarkably, the photocurrents in type I transistors are two orders of magnitude higher than those in type II transistors, which can be attributed to the fact that the photovoltaic photocurrents generated at the two heterojunctions are summed together in type I transistors, but they cancel each other in type II transistors. These multiheterostructures will provide a new platform for novel electronic/photonic devices with potential applications in broadband light sensing, highly sensitive imaging and ultrafast optoelectronic integrated circuits. 
    more » « less
  5. null (Ed.)