skip to main content

Search for: All records

Creators/Authors contains: "Xu, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advances in the blockchain research have been made in two important directions. One is refined resilience analysis utilizing game theory to study the consequences of selfish behavior of users (miners), and the other is the extension from a linear (chain) structure to a non-linear (graphical) structure for performance improvements, such as IOTA and Graphcoin. The first question that comes to mind is what improvements that a blockchain system would see by leveraging these new advances. In this paper, we consider three major properties for a blockchain system: α-partial verification, scalability, and finality-duration. We establish a formal framework and provemore »that no blockchain system can achieve ?-partial verification for any fixed constant ?, high scalability, and low finality-duration simultaneously. We observe that classical blockchain systems like Bitcoin achieves full verification (α=1) and low finality-duration, Ethereum 2.0 Sharding achieves low finality-duration and high scalability. We are interested in whether it is possible to partially satisfy the three properties.« less
  2. Abstract We present a new low-cost, high-throughput method for converting many types of organic carbon samples into graphite for radiocarbon ( 14 C) measurements by accelerator mass spectrometry (AMS). The method combines sample combustion and reduction to graphite into a single procedure. In the Single Step method, solid samples are placed directly into Pyrex containing zinc, titanium hydride and iron catalyst. The tube is evacuated, flame sealed, and placed in a muffle furnace for 7 hr. A variety of organic samples have been tested including oxalic acid, sucrose, wood, peat, collagen, humic acid, and contamination swipe samples. The method significantlymore »reduces the time required to produce a graphite sample for 14 C measurement, with analytical precision and accuracy approaching that of traditional two-step combustion and hydrogen reduction methods. The details and applicability of the method are presented.« less
  3. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hardmore »scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.« less
    Free, publicly-accessible full text available December 1, 2023
  4. ABSTRACT Replicate radiocarbon ( 14 C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.