- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Wu, Ronghu (5)
-
Xu, Senhan (5)
-
Tong, Ming (2)
-
Sun, Fangxu (1)
-
Suttapitugsakul, Suttipong (1)
-
Xiao, Haopeng (1)
-
Xu, Xing (1)
-
Yin, Kejun (1)
-
Zheng, Jiangnan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xu, Senhan; Tong, Ming; Suttapitugsakul, Suttipong; Wu, Ronghu (, Cell Reports)
-
Xu, Senhan; Zheng, Jiangnan; Xiao, Haopeng; Wu, Ronghu (, Analytical Chemistry)
-
Xu, Senhan; Sun, Fangxu; Tong, Ming; Wu, Ronghu (, Molecular Omics)null (Ed.)Protein O -GlcNAcylation refers to the covalent binding of a single N -acetylglucosamine (GlcNAc) to the serine or threonine residue. This modification primarily occurs on proteins in the nucleus and the cytosol, and plays critical roles in many cellular events, including regulation of gene expression and signal transduction. Aberrant protein O -GlcNAcylation is directly related to human diseases such as cancers, diabetes and neurodegenerative diseases. In the past decades, considerable progress has been made for global and site-specific analysis of O -GlcNAcylation in complex biological samples using mass spectrometry (MS)-based proteomics. In this review, we summarized previous efforts on comprehensive investigation of protein O -GlcNAcylation by MS. Specifically, the review is focused on methods for enriching and site-specifically mapping O -GlcNAcylated peptides, and applications for quantifying protein O -GlcNAcylation in different biological systems. As O -GlcNAcylation is an important protein modification for cell survival, effective methods are essential for advancing our understanding of glycoprotein functions and cellular events.more » « less
-
Xu, Senhan; Yin, Kejun; Wu, Ronghu (, Analytical Chemistry)