- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chiu, Daniel T. (2)
-
Xu, Shihan (2)
-
Yu, Jiangbo (2)
-
Chen, Haobin (1)
-
Ding, Zhaoyang (1)
-
Dunn, Andrew K. (1)
-
Hassan, Ahmed M. (1)
-
Jarrett, Jeremy W. (1)
-
Liu, Yen-Liang (1)
-
Miller, David R. (1)
-
Perillo, Evan P. (1)
-
Qin, Yuling (1)
-
Sun, Kai (1)
-
Wu, Changfeng (1)
-
Wu, Xu (1)
-
Yeh, Hsin-Chih (1)
-
Zhang, Jicheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sun, Kai ; Ding, Zhaoyang ; Zhang, Jicheng ; Chen, Haobin ; Qin, Yuling ; Xu, Shihan ; Wu, Changfeng ; Yu, Jiangbo ; Chiu, Daniel T. ( , Advanced Healthcare Materials)
Abstract Impaired glucose metabolism in diabetes causes severe acute and long‐term complications, making real‐time detection of blood glucose indispensable for diabetic patients. Existing continuous glucose monitoring systems are unsuitable for long‐term clinical glycemic management due to poor long‐term stability. Polymer dot (Pdot) glucose transducers are implantable optical nanosensors that exhibit excellent brightness, sensitivity, selectivity, and biocompatibility. Here, it is shown that hydrogen peroxide—a product of glucose oxidation in Pdot glucose sensors—degrades sensor performance via photobleaching, reduces glucose oxidase activity, and generates cytotoxicity. By adding catalase to a glucose oxidase‐based Pdot sensor to create an enzymatic cascade, the hydrogen peroxide product of glucose oxidation is rapidly decomposed by catalase, preventing its accumulation and improving the sensor's photostability, enzymatic activity, and biocompatibility. Thus, a next‐generation Pdot glucose transducer with a multienzyme reaction system (Pdot–GOx/CAT) that provides excellent sensing characteristics as well as greater detection system stability is presented. Pdot glucose transducers that incorporate this enzymatic cascade to eliminate hydrogen peroxide will possess greater long‐term stability for improved continuous glucose monitoring in diabetic patients.