skip to main content

Search for: All records

Creators/Authors contains: "Xu, Shouhuai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conducting manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the most powerful attack. We also discuss a number of future research directions.
    Free, publicly-accessible full text available January 31, 2024
  2. Free, publicly-accessible full text available May 1, 2023
  3. Abstract Alarm fatigue is a complex phenomenon that needs to be assessed within the context of the clinical setting. Considering that complexity, the available information on how to address alarm fatigue and improve alarm system safety is relatively scarce. This article summarizes the state of science in alarm system safety based on the eight dimensions of a sociotechnical model for studying health information technology in complex adaptive healthcare systems. The summary and recommendations were guided by available systematic reviews on the topic, interventional studies published between January 2019 and February 2022, and recommendations and evidence-based practice interventions published by professional organizations. The current article suggests implications to help researchers respond to the gap in science related to alarm safety, help vendors design safe monitoring systems, and help clinical leaders apply evidence-based strategies to improve alarm safety in their settings. Physiologic monitors in intensive care units—the devices most commonly used in complex care environments and associated with the highest number of alarms and deaths—are the focus of the current work.