Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A combination of several in situ techniques (XRD, XAS, AP-XPS, and E-TEM) was used to explore links between the structural and chemical properties of a Cu@TiOx catalyst under CO2 hydrogenation conditions. The active phase of the catalyst involved an inverse oxide/metal configuration, but the initial core@shell motif was disrupted during the pretreatment in H2. As a consequence of strong metal–support interactions, the titania shell cracked, and Cu particles migrated from the core to on top of the oxide with the simultaneous formation of a Cu–Ti–Ox phase. The generated Cu particles had a diameter of 20–40 nm and were decorated by small clusters of TiOx (<5 nm in size). Results of in situ XAS and XRD and images of E-TEM showed a very dynamic system, where the inverse oxide/metal configuration promoted the reactivity of the system toward CO2 and H2. At room temperature, CO2 oxidized the Cu nanoparticles (CO2,gas → COgas + Ooxide) inducing a redistribution of the TiOx clusters and big modifications in catalyst surface morphology. The generated oxide overlayer disappeared at elevated temperatures (>180 °C) upon exposure to H2, producing a transient surface that was very active for the reverse water–gas shift reaction (CO2 + H2 → CO + H2O) but was not stable at 200–350 °C. When oxidation and reduction occurred at the same time, under a mixture of CO2 and H2, the surface structure evolved toward a dynamic equilibrium that strongly depended on the temperature. Neither CO2 nor H2 can be considered as passive reactants. In the Cu@TiOx system, morphological changes were linked to variations in the composition of metal-oxide interfaces which were reversible with temperature or chemical environment and affected the catalytic activity of the system. The present study illustrates the dynamic nature of phenomena associated with the trapping and conversion of CO2.more » « lessFree, publicly-accessible full text available August 2, 2025
-
Small nanoparticles of ceria deposited on a powder of CuO display a very high selectivity for the production of methanol via CO2 hydrogenation. CeO2/CuO catalysts with ceria loadings of 5%, 20%, and 50% were investigated. Among these, the system with 5% CeOx showed the best catalytic performance at temperatures between 200 and 350 °C. The evolution of this system under reaction conditions was studied using a combination of environmental transmission electron microscopy (E-TEM), in situ X-ray absorption spectroscopy (XAS), and time-resolved X-ray diffraction (TR-XRD). For 5% CeOx/Cu, the in situ studies pointed to a full conversion of CuO into metallic copper, with a complete transformation of Ce4+ into Ce3+. Images from E-TEM showed drastic changes in the morphology of the catalyst when it was exposed to H2, CO2, and CO2/H2 mixtures. Under a CO2/H2 feed, there was a redispersion of the ceria particles that was detected by E-TEM and in situ TR-XRD. These morphological changes were made possible by the inverse oxide/metal configuration and facilitate the binding and selective conversion of CO2 to methanol.more » « less
-
Abstract High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet‐triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy‐coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin‐orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution‐stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super‐exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC) butform triplets in MOF in contrast to the frameworks that are built from linkers with sizablekISCbut. This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.more » « less