skip to main content


Search for: All records

Creators/Authors contains: "Xu, Xianjin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the results for CAPRI Round 54, the 5th joint CASP‐CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo‐trimers, 13 heterodimers including 3 antibody–antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High‐quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2‐Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2‐Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.

     
    more » « less
  2. We present a nonredundant benchmark, coined PepPro, for testing peptide–protein docking algorithms. Currently, PepPro contains 89 nonredundant experimentally determined peptide–protein complex structures, with peptide sequence lengths ranging from 5 to 30 amino acids. The benchmark covers peptides with distinct secondary structures, including helix, partial helix, a mixture of helix and β‐sheet, β‐sheet formed through binding, β‐sheet formed through self‐folding, and coil. In addition, unbound proteins' structures are provided for 58 complexes and can be used for testing the ability of a docking algorithm handling the conformational changes of proteins during the binding process. PepPro should benefit the docking community for the development and improvement of peptide docking algorithms. The benchmark is available athttp://zoulab.dalton.missouri.edu/PepPro_benchmark. © 2019 Wiley Periodicals, Inc.

     
    more » « less
  3. Protein–peptide interactions play a crucial role in a variety of cellular processes. The protein–peptide complex structure is a key to understand the mechanisms underlying protein–peptide interactions and is critical for peptide therapeutic development. We present a user‐friendly protein–peptide docking server, MDockPeP. Starting from a peptide sequence and a protein receptor structure, the MDockPeP Server globally docks the all‐atom, flexible peptide to the protein receptor. The produced modes are then evaluated with a statistical potential‐based scoring function, ITScorePeP. This method was systematically validated using the peptiDB benchmarking database. At least one near‐native peptide binding mode was ranked among top 10 (or top 500) in 59% (85%) of the bound cases, and in 40.6% (71.9%) of the challenging unbound cases. The server can be used for both protein–peptide complex structure prediction and initial‐stage sampling of the protein–peptide binding modes for other docking or simulation methods. MDockPeP Server is freely available athttp://zougrouptoolkit.missouri.edu/mdockpep. © 2018 Wiley Periodicals, Inc.

     
    more » « less
  4. Abstract

    CAPRI challenges offer a variety of blind tests for protein‐protein interaction prediction. In CAPRI Rounds 38‐45, we generated a set of putative binding modes for each target with an FFT‐based docking algorithm, and then scored and ranked these binding modes with a proprietary scoring function, ITScorePP. We have also developed a novel web server, Rebipp. The algorithm utilizes information retrieval to identify relevant biological information to significantly reduce the search space for a particular protein. In parallel, we have also constructed a GPU‐based docking server, MDockPP, for protein‐protein complex structure prediction. Here, the performance of our protocol in CAPRI rounds 38‐45 is reported, which include 16 docking and scoring targets. Among them, three targets contain multiple interfaces: Targets 124, 125, and 136 have 2, 4, and 3 interfaces, respectively. In the predictor experiments, we predicted correct binding modes for nine targets, including one high‐accuracy interface, six medium‐accuracy binding modes, and six acceptable‐accuracy binding modes. For the docking server prediction experiments, we predicted correct binding modes for eight targets, including one high‐accuracy, three medium‐accuracy, and five acceptable‐accuracy binding modes.

     
    more » « less
  5. Abstract

    Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community‐wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non‐physiological complexes. The non‐physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein‐protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non‐physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross‐validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non‐physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.

     
    more » « less
  6. ABSTRACT

    Protein‐protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water‐mediated interactions are crucial to the formation of a protein‐protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water‐mediated interactions is introduced into our protein‐protein docking method, MDockPP. Briefly, a FFT‐based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential‐based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein‐protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein‐ligand docking is employed for a parallel search for water molecules near the protein‐protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28–29 and 31–35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high‐accuracy, two medium‐accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water‐mediated interactions, we achieved models ranked as “excellent” in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424–434. © 2016 Wiley Periodicals, Inc.

     
    more » « less