skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Xu, Xiaolin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural network (DNN) models, despite their impressive performance, are vulnerable to exploitation by attackers who attempt to transfer them to other tasks for their own benefit. Current defense strategies mainly address this vulnerability at the model parameter level, leaving the potential of architectural-level defense largely unexplored. This paper, for the first time, addresses the issue of model protection by reducing transferability at the architecture level. Specifically, we present a novel neural architecture search (NAS)-enabled algorithm that employs zero-cost proxies and evolutionary search, to explore model architectures with low transferability. Our method, namely ArchLock, aims to achieve high performance on the source task, while degrading the performance on potential target tasks, i.e., locking the transferability of a DNN model. To achieve efficient cross-task search without accurately knowing the training data owned by the attackers, we utilize zero-cost proxies to speed up architecture evaluation and simulate potential target task embeddings to assist cross-task search with a binary performance predictor. Extensive experiments on NAS-Bench-201 and TransNAS-Bench-101 demonstrate that ArchLock reduces transferability by up to 30% and 50%, respectively, with negligible performance degradation on source tasks (<2%). The code is available at https://github.com/Tongzhou0101/ArchLock. 
    more » « less
  2. FPGA virtualization has garnered significant industry and academic interests as it aims to enable multi-tenant cloud systems that can accommodate multiple users' circuits on a single FPGA. Although this approach greatly enhances the efficiency of hardware resource utilization, it also introduces new security concerns. As a representative study, one state-of-the-art (SOTA) adversarial fault injection attack, named Deep-Dup, exemplifies the vulnerabilities of off-chip data communication within the multi-tenant cloud-FPGA system. Deep-Dup attacks successfully demonstrate the complete failure of a wide range of Deep Neural Networks (DNNs) in a black-box setup, by only injecting fault to extremely small amounts of sensitive weight data transmissions, which are identified through a powerful differential evolution searching algorithm. Such emerging adversarial fault injection attack reveals the urgency of effective defense methodology to protect DNN applications on the multi-tenant cloud-FPGA system. This paper, for the first time, presents a novel moving-target-defense (MTD) oriented defense framework DeepShuffle, which could effectively protect DNNs on multi-tenant cloud-FPGA against the SOTA Deep-Dup attack, through a novel lightweight model parameter shuffling methodology. DeepShuffle effectively counters the Deep-Dup attack by altering the weight transmission sequence, which effectively prevents adversaries from identifying security-critical model parameters from the repeatability of weight transmission during each inference round. Importantly, DeepShuffle represents a training-free DNN defense methodology, which makes constructive use of the typologies of DNN architectures to achieve being lightweight. Moreover, the deployment of DeepShuffle neither requires any hardware modification nor suffers from any performance degradation. We evaluate DeepShuffle on the SOTA open-source FPGA-DNN accelerator, Vertical Tensor Accelerator (VTA), which represents the practice of real-world FPGA-DNN system developers. We then evaluate the performance overhead of DeepShuffle and find it only consumes an additional ~3% of the inference time compared to the unprotected baseline. DeepShuffle improves the robustness of various SOTA DNN architectures like VGG, ResNet, etc. against Deep-Dup by orders. It effectively reduces the efficacy of evolution searching-based adversarial fault injection attack close to random fault injection attack, e.g., on VGG-11, even after increasing the attacker's effort by 2.3x, our defense shows a ~93% improvement in accuracy, compared to the unprotected baseline. 
    more » « less
    Free, publicly-accessible full text available May 19, 2025
  3. Brain-Computer interfaces (BCIs) are typically designed to be lightweight and responsive in real-time to provide users timely feedback. Classical feature engineering is computationally efficient but has low accuracy, whereas the recent neural networks (DNNs) improve accuracy but are computationally expensive and incur high latency. As a promising alternative, the low-dimensional computing (LDC) classifier based on vector symbolic architecture (VSA), achieves small model size yet higher accuracy than classical feature engineering methods. However, its accuracy still lags behind that of modern DNNs, making it challenging to process complex brain signals. To improve the accuracy of a small model, knowledge distillation is a popular method. However, maintaining a constant level of distillation between the teacher and student models may not be the best way for a growing student during its progressive learning stages. In this work, we propose a simple scheduled knowledge distillation method based on curriculum data order to enable the student to gradually build knowledge from the teacher model, controlled by an alpha scheduler. Meanwhile, we employ the LDC/VSA as the student model to enhance the on-device inference efficiency for tiny BCI devices that demand low latency. The empirical results have demonstrated that our approach achieves better tradeoff between accuracy and hardware efficiency compared to other methods. 
    more » « less
    Free, publicly-accessible full text available March 18, 2025