- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
03000010000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Dong, Xin Luna (4)
-
Li, Xian (4)
-
Xu, Yifan Ethan (4)
-
Wang, Yaqing (2)
-
Zhang, Chenwei (2)
-
Blanco Saldana, Gabriel (1)
-
Chang, Haw-Shiuan (1)
-
Cheng, Kewei (1)
-
Deshpande, Saurabh (1)
-
Faloutsos, Christos (1)
-
Gao, Jing (1)
-
Gao, Junyang (1)
-
Han, Jiawei (1)
-
He, Xiang (1)
-
Huang, Binxuan (1)
-
Kan, Andrey (1)
-
Karamanolakis, Giannis (1)
-
Liang, Yan (1)
-
Ma, Jun (1)
-
Mao, Yuning (1)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Product catalogs, conceptually in the form of text-rich tables, are self-reported by individual retailers and thus inevitably contain noisy facts. Verifying such textual attributes in product catalogs is essential to improve their reliability. However, popular methods for processing free-text content, such as pre-trained language models, are not particularly effective on structured tabular data since they are typically trained on free-form natural language texts. In this paper, we present Tab-Cleaner, a model designed to handle error detection over text-rich tabular data following a pre-training / fine-tuning paradigm. We train Tab-Cleaner on a real-world Amazon Product Catalog table w.r.t millions of products and show improvements over state-of-the-art methods by 16% on PR AUC over attribute applicability classification task and by 11% on PR AUC over attribute value validation task.more » « less
-
Wang, Yaqing ; Xu, Yifan Ethan ; Li, Xian ; Dong, Xin Luna ; Gao, Jing ( , ACM SIGKDD International Conference on Knowledge Discovery & Data Mining)null (Ed.)
-
Gao, Junyang ; Li, Xian ; Xu, Yifan Ethan ; Sisman, Bunyamin ; Dong, Xin Luna ; Yang, Jun ( , Proceedings of the VLDB Endowment)
-
Dong, Xin Luna ; He, Xiang ; Kan, Andrey ; Li, Xian ; Liang, Yan ; Ma, Jun ; Xu, Yifan Ethan ; Zhang, Chenwei ; Zhao, Tong ; Blanco Saldana, Gabriel ; et al ( , KDD:20 The 26th {ACM} {SIGKDD} Conference on Knowledge Discovery and Data Mining)null (Ed.)