skip to main content

Search for: All records

Creators/Authors contains: "Xu, Z."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current best practices for the assessment of the cyclic response of plastic silts are centered on the careful sampling and cyclic testing of natural, intact specimens. Side-by-side evaluation of in-situ and laboratory element test responses are severely limited, despite the need to establish similarities and differences in their characteristics. In this paper, a coordinated laboratory and field-testing campaign that was undertaken to compare the strain-controlled cyclic response of a plastic silt deposit at the Port of Longview, Longview, WA is described. Following a discussion of the subsurface conditions at one of several test panels, the responses of laboratory test specimensmore »to resonant column and cyclic torsional shear testing, and constant-volume, strain-controlled cyclic direct simple shear testing are described in terms of shear modulus nonlinearity and degradation, and excess pore pressure generation with shear strain. Several months earlier, the in-situ cyclic response of the same deposit was investigated by applying a range of shear strain amplitudes using a large mobile shaker. The in-situ response is presented and compared to the laboratory test results, highlighting similarities and differences arising from differences in mechanical (e.g., constant-volume shearing; strain rate-effects) and hydraulic (e.g., local drainage) boundary conditions and the spatial variability of natural soil deposits.« less
    Free, publicly-accessible full text available May 1, 2023
  2. Free, publicly-accessible full text available December 1, 2022
  3. Considered is a multi-channel wireless network for secret communication that uses the signal-to-interference-plus-noise ratio (SINR) as the performance measure. An eavesdropper can intercept encoded messages through a degraded channel of each legitimate transmitter-receiver communication pair. A friendly interferer, on the other hand, may send cooperative jamming signals to enhance the secrecy performance of the whole network. Besides, the state information of the eavesdropping channel may not be known completely. The transmitters and the friendly interferer have to cooperatively decide on the optimal jamming power allocation strategy that balances the secrecy performance with the cost of employing intentional interference, while themore »eavesdropper tries to maximize her eavesdropping capacity. To solve this problem, we propose and analyze a non-zero-sum game between the network defender and the eavesdropper who can only attack a limited number of channels. We show that the Nash equilibrium strategies for the players are of threshold type. We present an algorithm to find the equilibrium strategy pair. Numerical examples demonstrate the equilibrium and contrast it to baseline strategies.« less
  4. The amount of waste generation has been increasing with a significant amount being landfilled. These non-recyclable wastes contain large number of fiber and plastic wastes which can be treated with thermal processes to turn them into energy sources since they have high calorific values, are abundant and usually tipping fees are paid to handle them. This paper studied the torrefaction of non-recyclable paper (fiber) wastes, mixed plastic wastes (MPW) and their blends at different ratios in the temperature range of 250–400°C through thermogravimetric analysis (TGA). The solid residues after the experiments were analyzed by nuclear magnetic resonance (NMR) spectroscopy. Significantmore »synergy between fiber and MPW were observed at the range 250–300°C, showing both increase in the reaction rate as well as the overall mass loss. At 250°C, the maximum mass loss rate was more than two times higher and the mass loss at the end of the experiments were also much higher compared to the expected results. In addition, synergy was weakened with an increase of temperature, disappearing at 400°C. The existence of such interactions between fiber and plastic wastes indicates that the natural energy barriers during the individual torrefaction in paper waste or plastic waste could be bypassed, and the torrefaction of fiber and plastic blend can be achieved at lower temperatures and/or shorter residence times. The MPW and fiber wastes were also compounded by extrusion (to produce pellets) at 220°C with different blend ratios. The fiber-MPW pellets from extrusion were characterized by IR spectroscopy, rheology, thermal analysis and flexural properties and showed significant chemical changes from the non-extruded blends at the same ratios. From IR characterization, it was found that there was significant increase in hydroxyl (OH) group on account of the carbonyl (C  O) and etheric (C-O-C) groups. The interaction between paper and MPW can be attributed to the plastic polymers acting as a hydrogen donor during the reactive extrusion process. Synergistic effects were also found from mechanical and rheological properties.« less