skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Zhuangdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, deep learning models have revolutionized computer vision, enabling diverse applications. However, these models are computationally expensive, and leveraging them for video analyt- ics involves low-level imperative programming. To address these efficiency and usability challenges, the database community has de- veloped video database management systems (VDBMSs). However, existing VDBMSs lack extensibility and composability and do not support holistic system optimizations, limiting their practical appli- cation. In response to these issues, we present our vision for EVA, a VDBMS that allows for extensible support of user-defined functions and employs a Cascades-style query optimizer. Additionally, we leverage RAY’s distributed execution to enhance scalability and performance and explore hardware-specific optimizations to facilitate runtime optimizations. We discuss the architecture and design of EVA, our achievements thus far, and our research roadmap. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Over the last 20 years, mobile computing has evolved to encompass a wide array of increasingly data-rich applications. Many of these applications were enabled by the Cloud computing revolution, which commoditized server hardware to support vast numbers of mobile users from a few large, centralized data centers. Today, mobile's next stage of evolution is spurred by interest in emerging technologies such as Augmented and Virtual Reality (AR/VR), the Internet of Things (IoT), and Autonomous Vehicles. New applications relying on these technologies often require very low latency response times, increased bandwidth consumption, and the need to preserve privacy. Meeting all of these requirements from the Cloud alone is challenging for several reasons. First, the amount of data generated by devices can quickly saturate the bandwidth of backhaul links to the Cloud. Second, achieving low-latency responses for making decisions on sensed data becomes increasingly difficult the further mobile devices are from centralized Cloud data centers. And finally, regulatory or privacy restrictions on the data generated by devices may require that such data be kept locally. For these reasons, enabling next-generation technologies requires us to reconsider the current trend of serving applications from the Cloud alone. 
    more » « less