skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Xuan, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. Individuals with specific language impairment (SLI) struggle with language acquisition despite average non-verbal intelligence and otherwise typical development. One SLI account focuses on grammar acquisition delay. The current study aimed to detect novel rare genetic variants associated with performance on a grammar assessment, the Test of Early Grammatical Impairment (TEGI), in English-speaking children. The TEGI was selected due to its sensitivity and specificity, consistently high heritability estimates, and its absence from all but one molecular genetic study. We performed whole exome sequencing (WES) in eight families with SLI (n = 74 total) and follow-up Sanger sequencing in additional unrelated probands (n = 146). We prioritized rare exonic variants shared by individuals with low TEGI performance (n = 34) from at least two families under two filtering workflows: (1) novel and (2) previously reported candidate genes. Candidate variants were observed on six new genes (PDHA2, PCDHB3, FURIN, NOL6, IQGAP3, and BAHCC1), and two genes previously reported for overall language ability (GLI3 and FLNB). We specifically suggest PCDHB3, a protocadherin gene, and NOL6 are critical for ribosome synthesis, as they are important targets of SLI investigation. The proposed SLI candidate genes associated with TEGI performance emphasize the utility of precise phenotyping and family-based genetic study. 
    more » « less