Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multi-sensor fusion has been widely used by autonomous vehicles (AVs) to integrate the perception results from different sensing modalities including LiDAR, camera and radar. Despite the rapid development of multi-sensor fusion systems in autonomous driving, their vulnerability to malicious attacks have not been well studied. Although some prior works have studied the attacks against the perception systems of AVs, they only consider a single sensing modality or a camera-LiDAR fusion system, which can not attack the sensor fusion system based on LiDAR, camera, and radar. To fill this research gap, in this paper, we present the first study on the vulnerability of multi-sensor fusion systems that employ LiDAR, camera, and radar. Specifically, we propose a novel attack method that can simultaneously attack all three types of sensing modalities using a single type of adversarial object. The adversarial object can be easily fabricated at low cost, and the proposed attack can be easily performed with high stealthiness and flexibility in practice. Extensive experiments based on a real-world AV testbed show that the proposed attack can continuously hide a target vehicle from the perception system of a victim AV using only two small adversarial objects.more » « lessFree, publicly-accessible full text available May 29, 2025
-
null (Ed.)Recently, significant efforts are made to explore device-free human activity recognition techniques that utilize the information collected by existing indoor wireless infrastructures without the need for the monitored subject to carry a dedicated device. Most of the existing work, however, focuses their attention on the analysis of the signal received by a single device. In practice, there are usually multiple devices "observing" the same subject. Each of these devices can be regarded as an information source and provides us an unique "view" of the observed subject. Intuitively, if we can combine the complementary information carried by the multiple views, we will be able to improve the activity recognition accuracy. Towards this end, we propose DeepMV, a unified multi-view deep learning framework, to learn informative representations of heterogeneous device-free data. DeepMV can combine different views' information weighted by the quality of their data and extract commonness shared across different environments to improve the recognition performance. To evaluate the proposed DeepMV model, we set up a testbed using commercialized WiFi and acoustic devices. Experiment results show that DeepMV can effectively recognize activities and outperform the state-of-the-art human activity recognition methods.more » « less
-
Estimating the treatment effect benefits decision making in various domains as it can provide the potential outcomes of different choices. Existing work mainly focuses on covariates with numerical values, while how to handle covariates with textual information for treatment effect estimation is still an open question. One major challenge is how to filter out the nearly instrumental variables which are the variables more predictive to the treatment than the outcome. Conditioning on those variables to estimate the treatment effect would amplify the estimation bias. To address this challenge, we propose a conditional treatment-adversarial learning based matching method (CTAM). CTAM incorporates the treatment-adversarial learning to filter out the information related to nearly instrumental variables when learning the representations, and then it performs matching among the learned representations to estimate the treatment effects. The conditional treatment-adversarial learning helps reduce the bias of treatment effect estimation, which is demonstrated by our experimental results on both semi-synthetic and real-world datasets.more » « less