skip to main content

Search for: All records

Creators/Authors contains: "Xue, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nonparametric model-assisted estimators have been proposed to improve estimates of finite population parameters. Flexible nonparametric models provide more reliable estimators when a parametric model is misspecified. In this article, we propose an information criterion to select appropriate auxiliary variables to use in an additive model-assisted method. We approximate the additive nonparametric components using polynomial splines and extend the Bayesian Information Criterion (BIC) for finite populations. By removing irrelevant auxiliary variables, our method reduces model complexity and decreases estimator variance. We establish that the proposed BIC is asymptotically consistent in selecting the important explanatory variables when the true model is additive without interactions, a result supported by our numerical study. Our proposed method is easier to implement and better justified theoretically than the existing method proposed in the literature.
  2. Spatial–temporal data arise frequently in biomedical, environmental, political and social science studies. Capturing dynamic changes of time-varying correlation structure is scientifically important in spatio-temporal data analysis. We approximate the time-varying empirical estimator of the spatial correlation matrix by groups of selected basis matrices representing substructures of the correlation matrix. After projecting the correlation structure matrix onto a space spanned by basis matrices, we also incorporate varying-coefficient model selection and estimation for signals associated with relevant basis matrices. The unique feature of the proposed method is that signals at local regions corresponding with time can be identified through the proposed penalized objective function. Theoretically, we show model selection consistency and the oracle property in detecting local signals for the varying-coefficient estimators. The proposed method is illustrated through simulation studies and brain fMRI data.
  3. Free, publicly-accessible full text available March 1, 2024
  4. Free, publicly-accessible full text available April 1, 2024
  5. Free, publicly-accessible full text available February 1, 2024