skip to main content

Search for: All records

Creators/Authors contains: "Xue, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acrylic acid is an important compound widely used in industry with multiple commercial applications, and it is also a key intermediate in the marine organosulfur cycle. However, the fundamental ultraviolet (UV) absorption spectrum of acrylic acid or its conjugate base, acrylate (pKa = 4.25 at 20 oC) have not been determined in water. In this paper, we determined the absorption spectrum of acrylate in aqueous solution at pH 7.2 and 20 oC between 207 and 400 nm. The molar absorptivity decreased rapidly from 3958 M‒1 cm‒1 at 207 nm to a non-detectable value at wavelengths greater than 330 nm, with weak absorption at wavelengths greater than 290 nm (e.g., ɛ290nm 2.7 M‒1 cm‒1). No discernable absorption bands were observed in the absorption spectrum. Excellent agreement was observed when comparing absorption spectra obtained (1) with two different spectrophotometers and (2) with standards prepared from either newly purchased sodium acrylate or from the base hydrolysis of dimethylsulfoniopropionate. Wavelength-dependent molar absorptivities were constant at pH 7.2 over a range of acrylate concentrations from 25 to 135 μM. The absorption spectrum red shifted when the solution pH increased from 2.8 to 8.2, with an isosbestic point observed at 214 nm indicating two exchangeable species in solution. Our study provides the first detailed UV absorption spectra of acrylic acid and acrylate in aqueous solution, with important implications regarding the detection and study of these compounds in environmental settings and commercial applications. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Biogenic volatile organic compounds (VOCs) play key roles in coral reef ecosystems, where, together with dimethylated sulfur compounds, they are indicators of ecosystem health and are used as defense strategies and infochemicals. Assessment and prediction of the exchange rates of VOCs between the oceans and atmosphere, with implications for atmospheric reactivity and climate, are hampered by poor knowledge of the regulating processes and their temporal variability, including diel cycles. Here, we measured the variation over 36h of the concentrations of DMSPCs (dimethylsulfoniopropionate (DMSP)-related compounds, namely DMSP, dimethylsulfoxide, acrylate, dimethylsulfide, and methanethiol as dimethyl disulfide) and VOCs (COS, CS2, isoprene, the iodomethanes CH3I and CH2ClI, and the bromomethanes CHBr3and CH2Br2), in surface waters inside the shallow, northern coral-reef lagoon of Mo’orea (French Polynesia) and 4 km offshore, in the tropical open ocean. Comparisons with concurrent measurements of sea surface temperature, solar radiation, biogeochemical variables (nutrients, organic matter), and the abundances and taxonomic affiliations of microbial plankton were conducted with the aim to explain interconnections between DMSPCs, VOCs, and their environment across diel cycles. In open ocean waters, deeper surface mixing and low nutrient levels resulted in low phytoplankton biomass and bacterial activity. Consequently, the diel patterns of VOCs were more dependent on photochemical reactions, with daytime increases for several compounds including dissolved dimethylsulfoxide, COS, CS2, CH3I, and CH2ClI. A eukaryotic phytoplankton assemblage dominated by dinoflagellates and haptophytes provided higher cell-associated DMSP concentrations, yet the occurrence of DMSP degradation products (dimethylsulfide, dimethyl disulfide) was limited by photochemical loss. Conversely, in the shallow back reef lagoon the proximity of seafloor sediments, corals and abundant seaweeds resulted in higher nutrient levels, more freshly-produced organic matter, higher bacterial activity, and larger algal populations ofMamiellales, diatoms andCryptomonadales. Consequently, DMSP and dimethylsulfoxide concentrations were lower but those of most VOCs were higher. A combination of photobiological and photochemical processes yielded sunny-daytime increases and nighttime decreases of dimethylsulfide, dimethyl disulfide, COS, isoprene, iodomethanes and bromomethanes. Our results illustrate the important role of solar radiation in DMSPC and VOC cycling, and are relevant for the design of sampling strategies that seek representative and comparable measurements of these compounds.

    more » « less
    Free, publicly-accessible full text available February 16, 2025
  3. Abstract Laser powder bed fusion (L-PBF) additive manufacturing (AM) is an effective method of fabricating nickel–titanium (NiTi) shape memory alloys (SMAs) with complex geometries, unique functional properties, and tailored material compositions. However, with the increase of Ni content in NiTi powder feedstock, the ability to produce high-quality parts is notably reduced due to the emergence of macroscopic defects such as warpage, elevated edge/corner, delamination, and excessive surface roughness. This study explores the printability of a nickel-rich NiTi powder, where printability refers to the ability to fabricate macro-defect-free parts. Specifically, single track experiments were first conducted to select key processing parameter settings for cubic specimen fabrication. Machine learning classification techniques were implemented to predict the printable space. The reliability of the predicted printable space was verified by further cubic specimens fabrication, and the relationship between processing parameters and potential macro-defect modes was investigated. Results indicated that laser power was critical to the printability of high Ni content NiTi powder. In the low laser power setting (P < 100 W), the printable space was relatively wider with delamination as the main macro-defect mode. In the sub-high laser power condition (100 W ≤ P ≤ 200 W), the printable space was narrowed to a low hatch spacing region with macro-defects of warpage, elevated edge/corner, and delamination happened at different scanning speeds and hatch spacing combinations. The rough surface defect emerged when further increasing the laser power (P > 200 W), leading to a further narrowed printable space. 
    more » « less
  4. Shallow-water coral reefs hold large quantities of acrylate and its precursor dimethylsulfoniopropionate (DMSP), but production and removal processes for these compounds are poorly characterized. Here we determined the concentrations and cycling of acrylate and DMSP in a transect from a coral reef ecosystem to the open ocean, 2 km beyond the reef in Mo’orea, French Polynesia, during April 2018. Concentrations of dissolved acrylate and DMSP were low throughout the reef-ocean transect, ranging from 0.8–3.9 nM and 0.2–3.0 nM, respectively, with no difference observed between the coral reef and open ocean when comparing mean concentrations (± std dev) of dissolved acrylate (1.7 ± 0.7 vs 2.3 ± 0.8 nM) or DMSP (0.9 ± 0.7 vs 1.3 ± 0.6 nM). In the coral reef, dissolved acrylate was rapidly taken up by the heterotrophic community with a fast turnover time averaging ~ 6 h, six times faster than in the open ocean, and nearly as fast as the average turnover time of dissolved DMSP (~ 3 h). A clear diel trend was observed for the heterotrophic consumption of dissolved acrylate and DMSP in the coral reef, with higher uptake rate constants during daylight hours, synchronized with the larger daytime release of acrylate and DMSP from the coral compared to the nighttime release of these compounds. We also measured photochemical production rates of acrylate in Mo’orean waters, but rates were one to two orders of magnitude slower compared to its rates of biological consumption. Coral and macroalgae were the main sources of dissolved acrylate and DMSP to the reef ecosystem. Our results indicate there is rapid turnover of acrylate and DMSP in the coral reef with a tight coupling between production and removal pathways that maintain dissolved concentrations of these two compounds at very low levels. These algal and coral-derived substrates serve as important chemical links between the coral and heterotrophic communities, two fundamental components in the ecological network in coral reefs. 
    more » « less
  5. Volatile organic compounds (VOCs) are constituents of marine ecosystems including coral reefs, where they are sources of atmospheric reactivity, indicators of ecosystem state, components of defense strategies, and infochemicals. Most VOCs result from sunlight-related processes; however, their light-driven dynamics are still poorly understood. We studied the spatial variability of a suite of VOCs, including dimethylsulfide (DMS), and the other dimethylsulfoniopropionate-derived compounds (DMSPCs), namely, DMSP, acrylate, and dimethylsulfoxide (DMSO), in waters around colonies of two scleractinian corals ( Acropora pulchra and Pocillopora  sp.) and the brown seaweed  Turbinaria ornata  in Mo’orean reefs, French Polynesia. Concentration gradients indicated that the corals were sources of DMSPCs, but less or null sources of VOCs other than DMS, while the seaweed was a source of DMSPCs, carbonyl sulfide (COS), and poly-halomethanes. A focused study was conducted around an A. pulchra  colony where VOC and DMSPC concentrations and free-living microorganism abundances were monitored every 6 h over 30 h. DMSPC concentrations near the polyps paralleled sunlight intensity, with large diurnal increases and nocturnal decrease. rDNA metabarcoding and metagenomics allowed the determination of microbial diversity and the relative abundance of target functional genes. Seawater near coral polyps was enriched in DMS as the only VOC, plus DMSP, acrylate, and DMSO, with a large increase during the day, coinciding with high abundances of symbiodiniacean sequences. Only 10 cm below, near the coral skeleton colonized by a turf alga, DMSPC concentrations were much lower and the microbial community was significantly different. Two meters down current from the coral, DMSPCs decreased further and the microbial community was more similar to that near the polyps than that near the turf alga. Several DMSP cycling genes were enriched in near-polyp with respect to down-current waters, namely, the eukaryotic DMS production and DMS oxidation encoding genes, attributed to the coral and the algal symbiont, and the prokaryotic DMS production gene dddD , harbored by coral-associated Gammaproteobacteria . Our results suggest that solar radiation-induced oxidative stress caused the release of DMSPCs by the coral holobiont, either directly or through symbiont expulsion. Strong chemical and biological gradients occurred in the water between the coral branches, which we attribute to layered hydrodynamics. 
    more » « less