Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Microbial extracellular electron transfer (EET) drives various globally-important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed “nanowires” composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear. Here, we identify a highly-conserved omcS-companion (osc) cluster that drives the formation of OmcS cytochrome nanowires in Geobacter sulfurreducens. Through a combination of genetic, biochemical, and biophysical methods, we establish that prolyl isomerase-containing chaperon OscH, channel-like OscEFG, and β-propeller-like OscD are involved in the folding, secretion, and morphology maintenance of OmcS nanowires, respectively. OscH and OscG can interact with OmcS. Furthermore, overexpression of oscG accelerates EET by overproducing nanowires in an ATP-dependent manner. Heme loading splits OscD and ΔoscD accelerates cell growth with bundling nanowires. Our findings establish the mechanism and prevalence of a specialized and modular assembly system for nanowires across phylogenetically-diverse species and environmentsmore » « lessFree, publicly-accessible full text available January 15, 2026
-
Abstract Microbial respiration via extracellular electron transfer (EET) drives several globally-important environmental processes and has applications in bioenergy, bioremediation, and bioelectronics.
Geobacter sulfurreducens produce micrometer-long cytochrome nanowires for long-range (>10 µm) EET, but also require transmembrane porin-cytochrome complexes (PCCs), which can only perform EET on the cell surface. It was unknown why cells performing long-range EET need both PCCs and nanowires. Using Om(abc)B and OmcS as a model PCC and nanowire, respectively, for EET to Fe(III), we show that PCCs and nanowires form sequential, independent EET pathways where PCCs first kickstart EET and provide energy crucial for nanowire synthesis, and then nanowires perform long-range EET. Our model explains why both PCCs and nanowires are necessary. To understand the underlying EET mechanism, we purified native Om(ab)B and OmcB and found high excitonic coupling among hemes. Their midpoint reduction potentials (-182, -167 mV, respectively) are tuned for efficient electron transport. Additionally, OmcB transfers electrons to Fe(III) ~5 times more efficiently than OmcS. Our work suggests that the metabolic trade-off between PCCs and nanowires results from efficient proteome allocation. Notably, PCCs are widespread in environmentally-important bacteria and co-evolved with OmcS nanowires. This previously-undescribed nanowire synthesis strategy could accelerate EET in diverse microbes and environments.Free, publicly-accessible full text available November 21, 2025 -
Abstract Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes. Here we show that living biofilms of
Geobacter sulfurreducens use nanowires of cytochrome OmcS as intrinsic photoconductors. Photoconductive atomic force microscopy shows up to 100-fold increase in photocurrent in purified individual nanowires. Photocurrents respond rapidly (<100 ms) to the excitation and persist reversibly for hours. Femtosecond transient absorption spectroscopy and quantum dynamics simulations reveal ultrafast (~200 fs) electron transfer between nanowire hemes upon photoexcitation, enhancing carrier density and mobility. Our work reveals a new class of natural photoconductors for whole-cell catalysis. -
null (Ed.)Knowledge of the occurrences of water films on minerals is critical for global biogeochemical and atmospheric processes, including element cycling and ice nucleation. The underlying mechanisms controlling water film growth are, however, misunderstood. Using infrared nanospectroscopy, amplitude-modulated atomic force microscopy, and molecular simulations, we show how water films grow from water vapor on hydrophilic mineral nanoparticles. We imaged films with up to four water layers that grow anisotropically over a single face. Growth usually begins from the near edges of a face where defects preferentially capture water vapor. Thicker films produced by condensation cooling completely engulf nanoparticles and form thicker menisci over defects. The high surface tension of water smooths film surfaces and produces films of inhomogeneous thickness. Nanoscale topography and film surface energy thereby control anisotropic distributions and thicknesses of water films on hydrophilic mineral nanoparticles.more » « less
-
Abstract Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded
E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis.