skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamagami, Momona"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. While interacting with a machine, humans will naturally formulate beliefs about the machine's behavior, and these beliefs will affect the interaction. Since humans and machines have imperfect information about each other and their environment, a natural model for their interaction is a game. Such games have been investigated from the perspective of economic game theory, and some results on discrete decision-making have been translated to the neuromechanical setting, but there is little work on continuous sensorimotor games that arise when humans interact in a dynamic closed loop with machines. We study these games both theoretically and experimentally, deriving predictive models for steady-state (i.e. equilibrium) and transient (i.e. learning) behaviors of humans interacting with other agents (humans and machines). Specifically, we consider experiments wherein agents are instructed to control a linear system so as to minimize a given quadratic cost functional, i.e. the agents play a Linear-Quadratic game. Using our recent results on gradient-based learning in continuous games, we derive predictions regarding steady-state and transient play. These predictions are compared with empirical observations of human sensorimotor learning using a teleoperation testbed. 
    more » « less