skip to main content


Search for: All records

Creators/Authors contains: "Yamazaki, Dai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. null (Ed.)
    Abstract Globally, flood risk is projected to increase in the future due to climate change and population growth. Here, we quantify the role of dams in flood mitigation, previously unaccounted for in global flood studies, by simulating the floodplain dynamics and flow regulation by dams. We show that, ignoring flow regulation by dams, the average number of people exposed to flooding below dams amount to 9.1 and 15.3 million per year, by the end of the 21 st century (holding population constant), for the representative concentration pathway (RCP) 2.6 and 6.0, respectively. Accounting for dams reduces the number of people exposed to floods by 20.6 and 12.9% (for RCP2.6 and RCP6.0, respectively). While environmental problems caused by dams warrant further investigations, our results indicate that consideration of dams significantly affect the estimation of future population exposure to flood, emphasizing the need to integrate them in model-based impact analysis of climate change. 
    more » « less
  3. The magnitude of stream and river carbon dioxide (CO 2 ) emission is affected by seasonal changes in watershed biogeochemistry and hydrology. Global estimates of this flux are, however, uncertain, relying on calculated values for CO 2 and lacking spatial accuracy or seasonal variations critical for understanding macroecosystem controls of the flux. Here, we compiled 5,910 direct measurements of fluvial CO 2 partial pressure and modeled them against watershed properties to resolve reach-scale monthly variations of the flux. The direct measurements were then combined with seasonally resolved gas transfer velocity and river surface area estimates from a recent global hydrography dataset to constrain the flux at the monthly scale. Globally, fluvial CO 2 emission varies between 112 and 209 Tg of carbon per month. The monthly flux varies much more in Arctic and northern temperate rivers than in tropical and southern temperate rivers (coefficient of variation: 46 to 95 vs. 6 to 12%). Annual fluvial CO 2 emission to terrestrial gross primary production (GPP) ratio is highly variable across regions, ranging from negligible (<0.2%) to 18%. Nonlinear regressions suggest a saturating increase in GPP and a nonsaturating, steeper increase in fluvial CO 2 emission with discharge across regions, which leads to higher percentages of GPP being shunted into rivers for evasion in wetter regions. This highlights the importance of hydrology, in particular water throughput, in routing terrestrial carbon to the atmosphere via the global drainage networks. Our results suggest the need to account for the differential hydrological responses of terrestrial–atmospheric vs. fluvial–atmospheric carbon exchanges in plumbing the terrestrial carbon budget. 
    more » « less
  4. Abstract

    Extensive floodplains throughout the Amazon basin support important ecosystem services and influence global water and carbon cycles. A recent change in the hydroclimatic regime of the region, with increased rainfall in the northern portions of the basin, has produced record-breaking high water levels on the Amazon River mainstem. Yet, the implications for the magnitude and duration of floodplain inundation across the basin remain unknown. Here we leverage state-of-the-art hydrological models, supported byin-situand remote sensing observations, to show that the maximum annual inundation extent along the central Amazon increased by 26% since 1980. We further reveal increased flood duration and greater connectivity among open water areas in multiple Amazon floodplain regions. These changes in the hydrological regime of the world’s largest river system have major implications for ecology and biogeochemistry, and require rapid adaptation by vulnerable populations living along Amazonian rivers.

     
    more » « less
  5. Abstract

    The Mekong River Basin (MRB) is undergoing unprecedented changes due to the recent acceleration in large-scale dam construction. While the hydrology of the MRB is well understood and the effects of some of the existing dams have been studied, the potential effects of the planned dams on flood pulse dynamics over the entire Lower Mekong remains unexamined. Here, using hydrodynamic model simulations, we show that the effects of flow regulation on downstream river-floodplain dynamics are relatively predictable along the mainstream Mekong, but flow regulations could potentially disrupt the flood dynamics in the Tonle Sap River (TSR) and small distributaries in the Mekong Delta. Results suggest that TSR flow reversal could cease if the Mekong flood pulse is dampened by 50% and delayed by one-month. While flood occurrence in the vicinity of the Tonle Sap Lake and middle reach of the delta could increase due to enhanced low flow, it could decrease by up to five months in other areas due to dampened high flow, particularly during dry years. Further, areas flooded for less than five months and over six months are likely to be impacted significantly by flow regulations, but those flooded for 5–6 months could be impacted the least.

     
    more » « less
  6. Abstract

    A vector‐river network explicitly uses realistic geometries of river reaches and catchments for spatial discretization in a river model. This enables improving the accuracy of the physical properties of the modeled river system, compared to a gridded river network that has been used in Earth System Models. With a finer‐scale river network, resolving smaller‐scale river reaches, there is a need for efficient methods to route streamflow and its constituents throughout the river network. The purpose of this study is twofold: (1) develop a new method to decompose river networks into hydrologically independent tributary domains, where routing computations can be performed in parallel; and (2) perform global river routing simulations with two global river networks, with different scales, to examine the computational efficiency and the differences in discharge simulations at various temporal scales. The new parallelization method uses a hierarchical decomposition strategy, where each decomposed tributary is further decomposed into many sub‐tributary domains, enabling hybrid parallel computing. This parallelization scheme has excellent computational scaling for the global domain where it is straightforward to distribute computations across many independent river basins. However, parallel computing for a single large basin remains challenging. The global routing experiments show that the scale of the vector‐river network has less impact on the discharge simulations than the runoff input that is generated by the combination of land surface model and meteorological forcing. The scale of vector‐river networks needs to consider the scale of local hydrologic features such as lakes that are to be resolved in the network.

     
    more » « less
  7. Abstract

    Daily floods including event, characteristic, extreme and inundation in the Lancang‐Mekong River Basin (LMRB), crucial for flood projection and forecasting, have not been adequately modeled. An improved hydrological‐hydrodynamic model (VIC and CaMa‐Flood) considering regional parameterization was developed to simulate the flood dynamics over the basin from 1967 to 2015. The flood elements were extracted from daily time series and evaluated at both local and regional scales using the data collected from in‐situ observations and remote sensing. The results show that the daily discharge and water level are both well simulated at selected stations with relative error (RE) less than 10% and Nash‐Sutcliffe efficiency coefficient (NSE) over 0.90. Half of the flood events haveNSEexceeding 0.76. The peak time and flood volume are well reproduced while both peak discharge and water level are slightly underestimated. The results tend to worsen when the characteristics of flood events are extended to annual extremes. These extremes are generally underestimated withNSEless than 0.5 butREis within 20%. The simulated rainy season inundation area generally agrees with observations from remote sensing, with about 86.8% inundation occurrence frequency captured within the model capacity. Ignoring the regional parameterization and reservoir regulation can both deteriorate flood simulation performance at the local scale, resulting in lowerNSE. Specifically, systematically higher water levels and up to 27% overestimation of peak discharge are found when ignoring regional parameterization, while ignoring reservoir regulation would cause up to 23% overestimation for flood extremes. It is expected that these findings would contribute to the regional flood forecasting and flood management.

     
    more » « less
  8. Abstract

    Numerous studies have examined the changes in streamflow in the Mekong River Basin (MRB) using observations and hydrological modeling; however, there is a lack of integrated modeling studies that explicitly simulate the natural and human‐induced changes in flood dynamics over the entire basin. Here we simulate the river‐floodplain‐reservoir inundation dynamics over the MRB for 1979–2016 period using a newly integrated, high‐resolution (~5 km) river hydrodynamics‐reservoir operation model. The framework is based on the river‐floodplain hydrodynamic model CaMa‐Flood in which a new reservoir operation scheme is incorporated by including 86 existing MRB dams. The simulated flood extent is downscaled to a higher resolution (~90 m) to investigate fine‐scale inundation dynamics, and results are validated with ground‐ and satellite‐based observations. It is found that the historical variations in surface water storage have been governed primarily by climate variability; the impacts of dams on river‐floodplain hydrodynamics were marginal until 2009. However, results indicate that the dam impacts increased noticeably in 2010 when the basin‐wide storage capacity doubled due to the construction of new mega dams. Further, results suggest that the future flood dynamics in the MRB would be considerably different than in the past even without climate change and additional dams. However, it is also found that the impacts of dams can largely vary depending on reservoir operation strategies. This study is expected to provide the basis for high‐resolution river‐floodplain‐reservoir modeling for a holistic assessment of the impacts of dams and climate change on the floodpulse‐dependent hydro‐ecological systems in the MRB and other global regions.

     
    more » « less