skip to main content

Search for: All records

Creators/Authors contains: "Yamazaki, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The nature of the variability of the Total Electron Content (TEC) over Europe is investigated during 2009 and 2019 Northern Hemisphere (NH) SSW events in this study by using a combination of Global Navigation Satellite System (GNSS) based TEC observations and Thermosphere‐Ionosphere Electrodynamics General Circulation Model (TIE‐GCM) simulations. To simulate the SSW effects in TIE‐GCM, the dynamical fields from the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM‐X) simulations of 2009 and 2019 SSWs are specified at the TIE‐GCM lower boundary. The observed and simulated TEC are in overall good agreement and therefore the simulations are used to understand the sources of mid‐latitude TEC variability during both SSWs. Through comparison of TIE‐GCM simulations with and without geomagnetic forcing, we find that the TEC variability during the 2019 SSW event, was predominantly geomagnetically forced, while for the 2009 SSW, the major variability in TEC was accounted for by the changes in vertically propagating migrating semidiurnal solar (SW2) and lunar (M2) tides. By comparing the TIE‐GCM simulations with and without the SW2 and M2 tides, we find that these semidiurnal tides contribute to20%–25% increase in the quiet background TEC.

    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Abstract

    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025).

    more » « less
    Free, publicly-accessible full text available June 1, 2025