skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yan, Heng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Link prediction is an important task in online social networking as it can be used to infer new or previously unknown relationships of a network. However, due to the homophily principle, current algorithms are susceptible to promoting links that may lead to increase segregation of the network—an effect known as filter bubble. In this study, we examine the filter bubble problem from the perspective of algorithm fairness and introduce a dyadic-level fairness criterion based on network modularity measure. We show how the criterion can be utilized as a postprocessing step to generate more heterogeneous links in order to overcome the filter bubble problem. In addition, we also present a novel framework that combines adversarial network representation learning with supervised link prediction to alleviate the filter bubble problem. Experimental results conducted on several real-world datasets showed the effectiveness of the proposed methods compared to other baseline approaches, which include conventional link prediction and fairness-aware methods for i.i.d data. 
    more » « less