skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yan, Qinxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dynamic programming equations for mean field control problems with a separable structure are Eikonal type equations on the Wasserstein space. Standard differentiation using linear derivatives yield a direct extension of the classical viscosity theory. We use Fourier representation of the Sobolev norms on the space of measures, together with the standard techniques from the finite dimensional theory to prove a comparison result among semi-continuous sub and super solutions, obtaining a unique characterization of the value function. 
    more » « less
  2. An optimal control problem in the space of probability measures, and the viscosity solu- tions of the corresponding dynamic programming equations defined using the intrinsic linear derivative are studied. The value function is shown to be Lipschitz continuous with respect to a novel smooth Fourier-Wasserstein metric. A comparison result between the Lipschitz viscosity sub and super solutions of the dynamic programming equation is proved using this metric, characterizing the value function as the unique Lipschitz viscosity solution. 
    more » « less