skip to main content


Search for: All records

Creators/Authors contains: "Yan, Qizhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2024
  2. Abstract

    A low‐carbon future demands more affordable batteries utilizing abundant elements with sustainable end‐of‐life battery management. Despite the economic and environmental advantages of Li‐MnO2batteries, their application so far has been largely constrained to primary batteries. Here, we demonstrate that one of the major limiting factors preventing the stable cycling of Li‐MnO2batteries, Mn dissolution, can be effectively mitigated by employing a common ether electrolyte, 1 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3‐dioxane (DOL)/1,2‐dimethoxyethane (DME). We discover that the suppression of this dissolution enables highly reversible cycling of the MnO2cathode regardless of the synthesized phase and morphology. Moreover, we find that both the LiPF6salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges. The ether electrolyte, paired with MnO2cathodes is able to demonstrate stable cycling performance at various rates, even at elevated temperature such as 60°C. Our discovery not only represents a defining step in Li‐MnO2batteries with extended life but provides design criteria of electrolytes for vast manganese‐based cathodes in rechargeable batteries.

     
    more » « less
  3. Abstract

    Despite significant progress in energy retention, lithium‐ion batteries (LIBs) face untenable reductions in cycle life under extreme fast‐charging (XFC) conditions, which primarily originate from a variety of kinetic limitations between the graphite anode and the electrolyte. Through quantitative Li+loss accounting and comprehensive materials analyses, it is directly observed that the operation of LIB pouch cells at 4 C||C/3 (charging||discharging) results in Li plating, disadvantageous solid‐electrolyte‐interphase formation, and solvent co‐intercalation leading to interstitial decomposition within graphite layers. It is found that these failure modes originate from the insufficient properties of conventional electrolytes, where employing a designed ester‐based electrolyte improved the capacity retention of these cells from 55.9% to 88.2% after 500 cycles when operated at the aforementioned conditions. These metrics are the result of effective mitigation of the aforementioned failure modes due to superior Li+transport and desolvation characteristics demonstrated through both experimental and computational characterization. This work reveals the vital nature of electrolyte design to XFC performance.

     
    more » « less