skip to main content

Search for: All records

Creators/Authors contains: "Yan, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. Anomaly detection is a critical task in applications like preventing financial fraud, system malfunctions, and cybersecurity attacks. While previous research has offered a plethora of anomaly detection algorithms, effective anomaly detection remains challenging for users due to the tedious manual tuning process. Currently, model developers must determine which of these numerous algorithms is best suited for their particular domain and then must tune many parameters by hand to make the chosen algorithm perform well. This demonstration showcases AutoOD, the first unsupervised selftuning anomaly detection system which frees users from this tedious manual tuning process. AutoOD outperforms the best unsupervised anomalymore »detection methods it deploys, with its performance similar to those of supervised anomaly classification models, yet without requiring ground truth labels. Our easy-to-use visual interface allows users to gain insights into AutoOD’s self-tuning process and explore the underlying patterns within their datasets.« less
    Free, publicly-accessible full text available January 1, 2023