skip to main content

Search for: All records

Creators/Authors contains: "Yan, Yan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 2LiX-GaF3(X = Cl, Br, I) electrolytes offer favorable features for solid-state batteries: mechanical pliability and high conductivities. However, understanding the origin of fast ion transport in 2LiX-GaF3has been challenging. The ionic conductivity order of 2LiCl-GaF3(3.20 mS/cm) > 2LiBr-GaF3(0.84 mS/cm) > 2LiI-GaF3(0.03 mS/cm) contradicts binary LiCl (10−12S/cm) < LiBr (10−10S/cm) < LiI (10−7S/cm). Using multinuclear7Li,71Ga,19F solid-state nuclear magnetic resonance and density functional theory simulations, we found that Ga(F,X)npolyanions boost Li+-ion transport by weakening Li+-Xinteractions via charge clustering. In 2LiBr-GaF3and 2LiI-GaF3, Ga-X coordination is reduced with decreased F participation, compared to 2LiCl-GaF3. These insights will inform electrolyte design based on charge clustering, applicable to various ion conductors. This strategy could prove effective for producing highly conductive multivalent cation conductors such as Ca2+and Mg2+, as charge clustering of carboxylates in proteins is found to decrease their binding to Ca2+and Mg2+.

    more » « less
    Free, publicly-accessible full text available November 24, 2024
  2. Free, publicly-accessible full text available May 28, 2024
  3. Dipyridyl molecular junctions often show intriguing conductance switching behaviors with mechanical modulations, but the mechanisms are still not completely revealed. By applying the ab initio -based adiabatic simulation method, the configuration evolution and electron transport properties of dipyridyl molecular junctions in stretching and compressing processes are systematically investigated. The numerical results reveal that the dipyridyl molecular junctions tend to form specific contact configurations during formation processes. In small electrode gaps, the pyridyls almost vertically adsorb on the second Au layers of the tip electrodes by pushing the top Au atoms aside. These specific contact configurations result in stronger molecule–electrode couplings and larger electronic incident cross-sectional areas, which consequently lead to large breaking forces and high conductance. On further elongating the molecular junctions, the pyridyls shift to the top Au atoms of the tip electrodes. The additional scattering of the top Au atoms dramatically decreases the conductance and switches the molecular junctions to the lower conductive states. Perfect cyclical conductance switches are obtained as observed in the experiments by repeatedly stretching and compressing the molecular junctions. The O atom in the side-group tends to hinder the pyridyl from adsorbing on the second Au layer and further inhibits the conductance switch of the dipyridyl molecular junction. 
    more » « less
    Free, publicly-accessible full text available August 3, 2024