skip to main content


Search for: All records

Creators/Authors contains: "Yang, Allen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A new mobile computing paradigm, dubbed mini-app, has been growing rapidly over the past few years since being introduced by WeChat in 2017. In this paradigm, a host app allows its end-users to install and run mini-apps inside itself, enabling the host app to build an ecosystem around (much like Google Play and Apple AppStore), enrich the host's functionalities, and offer mobile users elevated convenience without leaving the host app. It has been reported that there are over millions of mini-apps in WeChat. However, little information is known about these mini-apps at an aggregated level. In this paper, we present MiniCrawler, the first scalable and open source WeChat mini-app crawler that has indexed over 1,333,308 mini-apps. It leverages a number of reverse engineering techniques to uncover the interfaces and APIs in WeChat for crawling the mini-apps. With the crawled mini-apps, we then measure their resource consumption, API usage, library usage, obfuscation rate, app categorization, and app ratings at an aggregated level. The details of how we develop MiniCrawler and our measurement results are reported in this paper. 
    more » « less
  2. Abstract

    Glycosylation plays important roles in cellular function and endows protein therapeutics with beneficial properties. However, constructing biosynthetic pathways to study and engineer precise glycan structures on proteins remains a bottleneck. Here, we report a modular, versatile cell-free platform forglycosylationpathway assembly byrapidin vitromixing andexpression (GlycoPRIME). In GlycoPRIME, glycosylation pathways are assembled by mixing-and-matching cell-free synthesized glycosyltransferases that can elaborate a glucose primer installed onto protein targets by anN-glycosyltransferase. We demonstrate GlycoPRIME by constructing 37 putative protein glycosylation pathways, creating 23 unique glycan motifs, 18 of which have not yet been synthesized on proteins. We use selected pathways to synthesize a protein vaccine candidate with an α-galactose adjuvant motif in a one-pot cell-free system and human antibody constant regions with minimal sialic acid motifs in glycoengineeredEscherichia coli. We anticipate that these methods and pathways will facilitate glycoscience and make possible new glycoengineering applications.

     
    more » « less