skip to main content

Search for: All records

Creators/Authors contains: "Yang, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is in- formative and important to understand motion mechanisms of body regions. Modeling such in- formation into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. However, existing deep learning based approaches neglect motion information during the reconstruction procedure, while traditional motion-guided methods are hindered by heuristic parameter tuning and long inference time. We propose a novel dynamic MRI reconstruction approach called MODRN that unitizes deep neural networks with motion in- formation to improve reconstruction quality. The central idea is to decompose the motion-guided optimization problem of dynamic MRI reconstruction into three components: dynamic reconstruc- tion, motion estimation and motion compensation. Extensive experiments have demonstrated the effectiveness of our proposed approach compared to other state-of-the-art approaches. 
    more » « less
  3. We consider an MRI reconstruction problem with input of k-space data at a very low undersampled rate. This can prac- tically benefit patient due to reduced time of MRI scan, but it is also challenging since quality of reconstruction may be compromised. Currently, deep learning based methods dom- inate MRI reconstruction over traditional approaches such as Compressed Sensing, but they rarely show satisfactory performance in the case of low undersampled k-space data. One explanation is that these methods treat channel-wise fea- tures equally, which results in degraded representation ability of the neural network. To solve this problem, we propose a new model called MRI Cascaded Channel-wise Attention Network (MICCAN), highlighted by three components: (i) a variant of U-net with Channel-wise Attention (UCA) mod- ule, (ii) a long skip connection and (iii) a combined loss. Our model is able to attend to salient information by filtering irrelevant features and also concentrate on high-frequency in- formation by enforcing low-frequency information bypassed to the final output. We conduct both quantitative evaluation and qualitative analysis of our method on a cardiac dataset. The experiment shows that our method achieves very promis- ing results in terms of three common metrics on the MRI reconstruction with low undersampled k-space data. Code is public available 
    more » « less
  4. The segmentation of the ventricular wall and the blood pool in cardiac magnetic resonance imaging (MRI) has been inves- tigated for decades, given its important role for delineation of cardiac functioning and diagnosis of heart diseases. One of the major challenges is that the inner epicardium boundary is not always visible in the image domain, due to the mix- ture of blood and muscle structures, especially at the end of contraction, or systole. To address it, we propose a novel ap- proach for the cardiac segmentation in the short-axis (SAX) MRI: coupled deep neural networks and deformable models. First, a 2D U-Net is adopted for each magnetic resonance (MR) slice, and a 3D U-Net refines the segmentation results along the temporal dimension. Then, we propose a multi- component deformable model to extract accurate contours for both endo- and epicardium with global and local constraints. Finally, a partial blood classification is explored to estimate the presence of boundary pixels near the trabeculae and solid wall, and to avoid moving the endocardium boundary inward. Quantitative evaluation demonstrates the high accuracy, ro- bustness, and efficiency of our approach for the slices ac- quired at different locations and different cardiac phases. 
    more » « less