skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Darian T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The HIV-1 capsid protein (CA) assembles into a conical shell during viral maturation, encasing and protecting the viral RNA genome. The C-terminal domain (CTD) of the two-domain capsid protein dimerizes, and this dimer connects individual chains in the mature capsid lattice. Previous NMR studies have shown that different dimer arrangements can be formed by isolated capsid protein chains and in assembled capsid lattices; however, the dynamics and functional relevance of these alternate dimers are unknown. To explore the conformational landscape of the CA-CTD dimer, we carried out atomistic molecular dynamics simulations using the weighted ensemble path sampling strategy, generating an ensemble of conformations. Focusing on the two dimer forms previously observed via solution NMR, we refined the conformational ensemble to highlight two metastable states using a Markov state model. Experimentally, we measured the interconversion rates between the two alternate dimers using19F NMR, and these rates showed good agreement with the interconversion rates derived from the simulations. After identifying the key interactions that distinguish the dimer states, the alternate dimer was further experimentally verified through disulfide crosslinking. Our results demonstrate the advantages of pairing weighted ensemble path sampling with19F NMR to gain atomistic insights into the hidden dimer state of the HIV-1 capsid protein. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026