skip to main content


Search for: All records

Creators/Authors contains: "Yang, FeiFei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract

    Selective laser sintering (SLS) technology produces a substantial amount of un-sintered polyamide 12 powders after the manufacturing process. Failure to recycle and reuse these aged powders not only leads to economic losses but also is environmentally unfriendly. This is particularly problematic for powder particles close to the heat-affected zones that go through severe thermal degradations during the laser sintering processes. Limited procedures exist for systematically reusing such extremely aged powders. This work proposes a systematic method to maximize reusability of aged and extremely aged polyamide 12 powders. Building on a previously untapped interlayer heating, pre-processing, and a systematic mixing of powder materials, we show how reclaimed polyamide 12 powders can be consistently reprinted into functional samples, with mechanical properties even superior to current industrial norms. In particular, the proposed method can yield printed samples with 18.04% higher tensile strength and 55.29% larger elongation at break using as much as 30% of extremely aged powders compared to the benchmark sample.

     
    more » « less
  2. Abstract

    Peritoneal adhesion occurs in a majority of patients following abdominal surgery and can result in significant side effects and complications. Current strategies to minimize adhesions involve the use of nontargeted anatomical barriers that are either inefficient in protecting injured areas or lacking the adequate residence time to prevent adhesions. Herein, the development of a biologically targeted photo‐crosslinkable nanopatch (pCNP) is reported that can prevent postsurgical adhesion. It is demonstrated that pCNP can form a compact protective barrier over surfaces with exposed collagen IV. Using a rat parietal peritoneal excision adhesion model, it is showed that pCNP is highly effective and safe in preventing postsurgical adhesions. This work presents a novel approach to preventing peritoneal adhesion with nanomaterials.

     
    more » « less