skip to main content

Search for: All records

Creators/Authors contains: "Yang, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High performance carbon and glass fibers are widely used as reinforcements in composite material systems for aerospace, automotive, and defense applications. Modifications to fiber surface treatment (sizing) is one of the ways to improve the strength of fibers and hence the overall longitudinal tensile strength of the composite. Single fiber tensile tests at the millimeter scale are typically used to characterize the effect of sizing on fiber strength. However, the characteristic length-scale governing the composite failure due to a cluster of fiber breaks is in the micro-scales. To access such micro-scale gage-lengths, we aim to employ indenters of varying radiimore »to transversely load fibers and use scanning electron microscope (SEM) with digital image correlation (DIC) to measure strains at these lengthscales. The use of DIC technique requires creation of a uniform, random, and high contrast speckle pattern on the fiber surface such as that shown in Figure 1. In this work, we investigate the formation of sub-microscale speckle pattern on carbon fiber surface via sputter deposition and pulsed laser deposition techniques (PLD) using Gold-Palladium (Au-Pd) and Niobium-doped SrTiO3 (Nb:STO) targets respectively. Different processing conditions are investigated for both sputter deposition: sputtering current and coating duration, and PLD: number of pulses respectively to create sub-micron scale patterns viable for micro-DIC on both sized and unsized carbon fibers. By varying the deposition conditions and SEM-imaging the deposited patterns on fibers, successful pattern formation at sub-micron scale is demonstrated for both as-received sized and unsized IM7 carbon fibers of average diameter 5.2 µm via sputter deposition and PLD respectively.« less
  2. State-of-the-art deep reading comprehension models are dominated by recurrent neural nets. Their sequential nature is a natural fit for language, but it also precludes parallelization within an instances and often becomes the bottleneck for deploying such models to latency critical scenarios. This is particularly problematic for longer texts. Here we present a convolutional architecture as an alternative to these recurrent architectures. Using simple dilated convolutional units in place of recurrent ones, we achieve results comparable to the state of the art on two question answering tasks, while at the same time achieving up to two orders of magnitude speedups formore »question answering.« less
  3. Free, publicly-accessible full text available April 1, 2023
  4. Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m 3 . The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operationmore »between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.« less
    Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available October 1, 2022